1 Star 0 Fork 0

strongerfly/sort_py38

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
test.py 12.35 KB
一键复制 编辑 原始数据 按行查看 历史
strongerfly 提交于 2021-12-15 16:13 . sort测试
"""
SORT: A Simple, Online and Realtime Tracker
Copyright (C) 2016 Alex Bewley alex@dynamicdetection.com
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
from __future__ import print_function
from numba import jit
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from skimage import io
# from sklearn.utils.linear_assignment_ import linear_assignment
from scipy.optimize import linear_sum_assignment as linear_assignment
import glob
import time
import argparse
from filterpy.kalman import KalmanFilter
@jit
def iou(bb_test, bb_gt):
"""
Computes IUO between two bboxes in the form [x1,y1,x2,y2]
"""
xx1 = np.maximum(bb_test[0], bb_gt[0])
yy1 = np.maximum(bb_test[1], bb_gt[1])
xx2 = np.minimum(bb_test[2], bb_gt[2])
yy2 = np.minimum(bb_test[3], bb_gt[3])
w = np.maximum(0., xx2 - xx1)
h = np.maximum(0., yy2 - yy1)
wh = w * h
o = wh / ((bb_test[2] - bb_test[0]) * (bb_test[3] - bb_test[1])
+ (bb_gt[2] - bb_gt[0]) * (bb_gt[3] - bb_gt[1]) - wh)
return (o)
def convert_bbox_to_z(bbox):
"""
Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form
[x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
the aspect ratio
"""
w = bbox[2] - bbox[0]
h = bbox[3] - bbox[1]
x = bbox[0] + w / 2.
y = bbox[1] + h / 2.
s = w * h # scale is just area
r = w / float(h)
return np.array([x, y, s, r]).reshape((4, 1))
def convert_x_to_bbox(x, score=None):
"""
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
"""
w = np.sqrt(x[2] * x[3])
h = x[2] / w
if (score == None):
return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2.]).reshape((1, 4))
else:
return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2., score]).reshape((1, 5))
class KalmanBoxTracker(object):
"""
This class represents the internel state of individual tracked objects observed as bbox.
"""
count = 0
def __init__(self, bbox):
"""
Initialises a tracker using initial bounding box.
"""
# define constant velocity model
self.kf = KalmanFilter(dim_x=7, dim_z=4)
self.kf.F = np.array(
[[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1]])
self.kf.H = np.array(
[[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]])
self.kf.R[2:, 2:] *= 10.
self.kf.P[4:, 4:] *= 1000. # give high uncertainty to the unobservable initial velocities
self.kf.P *= 10.
self.kf.Q[-1, -1] *= 0.01
self.kf.Q[4:, 4:] *= 0.01
self.kf.x[:4] = convert_bbox_to_z(bbox)
self.time_since_update = 0
self.id = KalmanBoxTracker.count
KalmanBoxTracker.count += 1
self.history = []
self.hits = 0
self.hit_streak = 0
self.age = 0
def update(self, bbox):
"""
Updates the state vector with observed bbox.
"""
self.time_since_update = 0
self.history = []
self.hits += 1
self.hit_streak += 1
self.kf.update(convert_bbox_to_z(bbox))
def predict(self):
"""
Advances the state vector and returns the predicted bounding box estimate.
"""
if ((self.kf.x[6] + self.kf.x[2]) <= 0):
self.kf.x[6] *= 0.0
self.kf.predict()
self.age += 1
if (self.time_since_update > 0):
self.hit_streak = 0
self.time_since_update += 1
self.history.append(convert_x_to_bbox(self.kf.x))
return self.history[-1]
def get_state(self):
"""
Returns the current bounding box estimate.
"""
return convert_x_to_bbox(self.kf.x)
def associate_detections_to_trackers(detections, trackers, iou_threshold=0.45):
"""
Assigns detections to tracked object (both represented as bounding boxes)
Returns 3 lists of matches, unmatched_detections and unmatched_trackers
"""
# 如果detection为空则创建空的矩阵 (0,2) (dets长度的一维数组) (0,5)
if (len(trackers) == 0):
return np.empty((0, 2), dtype=int), np.arange(len(detections)), np.empty((0, 5), dtype=int)
iou_matrix = np.zeros((len(detections), len(trackers)), dtype=np.float32)
print('detections is ', detections)
print('detections is ', trackers)
print('iou_matrix is ', iou_matrix)
# iou数组赋值
for d, det in enumerate(detections):
for t, trk in enumerate(trackers):
iou_matrix[d, t] = iou(det, trk)
print('iou_matrix is ', iou_matrix)
matched_indices = linear_assignment(-iou_matrix)
matched_indices = np.array(matched_indices, np.int32)
matched_indices = matched_indices.transpose()
print('matched_indices is ', matched_indices)
unmatched_detections = []
for d, det in enumerate(detections):
if (d not in matched_indices[:, 0]):
unmatched_detections.append(d)
unmatched_trackers = []
for t, trk in enumerate(trackers):
if (t not in matched_indices[:, 1]):
unmatched_trackers.append(t)
# filter out matched with low IOU
matches = []
print('iou_matrix is ', iou_matrix)
for m in matched_indices:
print('m is ', m)
if (iou_matrix[int(m[0]), int(m[1])] < iou_threshold):
unmatched_detections.append(m[0])
unmatched_trackers.append(m[1])
else:
matches.append(m.reshape(1, 2))
if (len(matches) == 0):
matches = np.empty((0, 2), dtype=int)
else:
matches = np.concatenate(matches, axis=0)
return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
class Sort(object):
def __init__(self, max_age=1, min_hits=3):
"""
Sets key parameters for SORT
"""
self.max_age = max_age
self.min_hits = min_hits
self.trackers = []
self.frame_count = 0
def update(self, dets):
"""
Params:
dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...]
Requires: this method must be called once for each frame even with empty detections.
Returns the a similar array, where the last column is the object ID.
NOTE: The number of objects returned may differ from the number of detections provided.
"""
self.frame_count += 1
# get predicted locations from existing trackers.
trks = np.zeros((len(self.trackers), 5))
to_del = []
ret = []
for t, trk in enumerate(trks):
pos = self.trackers[t].predict()[0]
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
if (np.any(np.isnan(pos))):
to_del.append(t)
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
for t in reversed(to_del):
self.trackers.pop(t)
# 根据dets 和trks 返回matched unmatcheddets unmatched_trk
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets, trks)
# print('matched is ',matched.shape,matched)
# print('unmatched_dets is ', unmatched_dets)
# print('unmatched_trks is ', unmatched_trks)
# update matched trackers with assigned detections
for t, trk in enumerate(self.trackers):
# print('t is',type(t),trk,unmatched_trks[0],type(unmatched_trks[0]))
if (t not in unmatched_trks):
d = matched[np.where(matched[:, 1] == t)[0], 0]
trk.update(dets[d, :][0])
# create and initialise new trackers for unmatched detections
# print('unmatched_dets is ',unmatched_dets)
for i in unmatched_dets:
trk = KalmanBoxTracker(dets[int(i), :])
self.trackers.append(trk)
i = len(self.trackers)
for trk in reversed(self.trackers):
d = trk.get_state()[0]
if ((trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits)):
ret.append(np.concatenate((d, [trk.id + 1])).reshape(1, -1)) # +1 as MOT benchmark requires positive
i -= 1
# remove dead tracklet
if (trk.time_since_update > self.max_age):
self.trackers.pop(i)
if (len(ret) > 0):
return np.concatenate(ret)
return np.empty((0, 5))
def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser(description='SORT demo')
parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]',
action='store_true')
args = parser.parse_args()
return args
if __name__ == '__main__':
# all train
sequences = ['PETS09-S2L1', 'TUD-Campus', 'TUD-Stadtmitte', 'ETH-Bahnhof', 'ETH-Sunnyday', 'ETH-Pedcross2',
'KITTI-13', 'KITTI-17', 'ADL-Rundle-6', 'ADL-Rundle-8', 'Venice-2']
sequences =['header']
args = parse_args()
display = args.display
phase = 'train'
total_time = 0.0
total_frames = 0
colours = np.random.rand(32, 3) # used only for display
if (display):
if not os.path.exists('mot_benchmark'):
print(
'\n\tERROR: mot_benchmark link not found!\n\n Create a symbolic link to the MOT benchmark\n (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n')
exit()
plt.ion()
fig = plt.figure()
if not os.path.exists('output'):
os.makedirs('output')
for seq in sequences:
mot_tracker = Sort() # create instance of the SORT tracker
seq_dets = np.loadtxt('data/%s/det.txt' % (seq)) # load detections
with open('output/%s.txt' % (seq), 'w') as out_file:
print("Processing %s." % (seq))
for frame in range(int(seq_dets[:, 0].max())):
frame += 1 # detection and frame numbers begin at 1
#dets = seq_dets[seq_dets[:, 0] == frame, 2:7]
dets = seq_dets[seq_dets[:, 0] == frame, 1:6]
dets[:, 2:4] += dets[:, 0:2] # convert to [x1,y1,w,h] to [x1,y1,x2,y2]
total_frames += 1
if (display):
ax1 = fig.add_subplot(111, aspect='equal')
fn = 'mot_benchmark/%s/%s/img1/%06d.jpg' % (phase, seq, frame)
im = io.imread(fn)
ax1.imshow(im)
plt.title(seq + ' Tracked Targets')
start_time = time.time()
trackers = mot_tracker.update(dets)
cycle_time = time.time() - start_time
total_time += cycle_time
for d in trackers:
print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1' % (frame, d[4], d[0], d[1], d[2] - d[0], d[3] - d[1]),
file=out_file)
if (display):
d = d.astype(np.int32)
ax1.add_patch(patches.Rectangle((d[0], d[1]), d[2] - d[0], d[3] - d[1], fill=False, lw=3,
ec=colours[d[4] % 32, :]))
ax1.set_adjustable('box-forced')
if (display):
fig.canvas.flush_events()
plt.draw()
ax1.cla()
print("Total Tracking took: %.3f for %d frames or %.1f FPS" % (total_time, total_frames, total_frames / total_time))
if (display):
print("Note: to get real runtime results run without the option: --display")
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/strongerfly/sort_py38.git
git@gitee.com:strongerfly/sort_py38.git
strongerfly
sort_py38
sort_py38
master

搜索帮助