代码拉取完成,页面将自动刷新
# Welcome to the PyTorch setup.py.
#
# Environment variables you are probably interested in:
#
# DEBUG
# build with -O0 and -g (debug symbols)
#
# REL_WITH_DEB_INFO
# build with optimizations and -g (debug symbols)
#
# MAX_JOBS
# maximum number of compile jobs we should use to compile your code
#
# USE_CUDA=0
# disables CUDA build
#
# CFLAGS
# flags to apply to both C and C++ files to be compiled (a quirk of setup.py
# which we have faithfully adhered to in our build system is that CFLAGS
# also applies to C++ files (unless CXXFLAGS is set), in contrast to the
# default behavior of autogoo and cmake build systems.)
#
# CC
# the C/C++ compiler to use (NB: the CXX flag has no effect for distutils
# compiles, because distutils always uses CC to compile, even for C++
# files.
#
# Environment variables for feature toggles:
#
# USE_CUDNN=0
# disables the cuDNN build
#
# USE_FBGEMM=0
# disables the FBGEMM build
#
# USE_KINETO=0
# disables usage of libkineto library for profiling
#
# USE_NUMPY=0
# disables the NumPy build
#
# BUILD_TEST=0
# disables the test build
#
# USE_MKLDNN=0
# disables use of MKLDNN
#
# MKLDNN_CPU_RUNTIME
# MKL-DNN threading mode: TBB or OMP (default)
#
# USE_NNPACK=0
# disables NNPACK build
#
# USE_QNNPACK=0
# disables QNNPACK build (quantized 8-bit operators)
#
# USE_DISTRIBUTED=0
# disables distributed (c10d, gloo, mpi, etc.) build
#
# USE_SYSTEM_NCCL=0
# disables use of system-wide nccl (we will use our submoduled
# copy in third_party/nccl)
#
# BUILD_CAFFE2_OPS=0
# disable Caffe2 operators build
#
# BUILD_CAFFE2=0
# disable Caffe2 build
#
# USE_IBVERBS
# toggle features related to distributed support
#
# USE_OPENCV
# enables use of OpenCV for additional operators
#
# USE_OPENMP=0
# disables use of OpenMP for parallelization
#
# USE_FFMPEG
# enables use of ffmpeg for additional operators
#
# USE_LEVELDB
# enables use of LevelDB for storage
#
# USE_LMDB
# enables use of LMDB for storage
#
# BUILD_BINARY
# enables the additional binaries/ build
#
# PYTORCH_BUILD_VERSION
# PYTORCH_BUILD_NUMBER
# specify the version of PyTorch, rather than the hard-coded version
# in this file; used when we're building binaries for distribution
#
# TORCH_CUDA_ARCH_LIST
# specify which CUDA architectures to build for.
# ie `TORCH_CUDA_ARCH_LIST="6.0;7.0"`
# These are not CUDA versions, instead, they specify what
# classes of NVIDIA hardware we should generate PTX for.
#
# ONNX_NAMESPACE
# specify a namespace for ONNX built here rather than the hard-coded
# one in this file; needed to build with other frameworks that share ONNX.
#
# BLAS
# BLAS to be used by Caffe2. Can be MKL, Eigen, ATLAS, or OpenBLAS. If set
# then the build will fail if the requested BLAS is not found, otherwise
# the BLAS will be chosen based on what is found on your system.
#
# MKL_THREADING
# MKL threading mode: SEQ, TBB or OMP (default)
#
# USE_REDIS
# Whether to use Redis for distributed workflows (Linux only)
#
# USE_ZSTD
# Enables use of ZSTD, if the libraries are found
#
# Environment variables we respect (these environment variables are
# conventional and are often understood/set by other software.)
#
# CUDA_HOME (Linux/OS X)
# CUDA_PATH (Windows)
# specify where CUDA is installed; usually /usr/local/cuda or
# /usr/local/cuda-x.y
# CUDAHOSTCXX
# specify a different compiler than the system one to use as the CUDA
# host compiler for nvcc.
#
# CUDA_NVCC_EXECUTABLE
# Specify a NVCC to use. This is used in our CI to point to a cached nvcc
#
# CUDNN_LIB_DIR
# CUDNN_INCLUDE_DIR
# CUDNN_LIBRARY
# specify where cuDNN is installed
#
# MIOPEN_LIB_DIR
# MIOPEN_INCLUDE_DIR
# MIOPEN_LIBRARY
# specify where MIOpen is installed
#
# NCCL_ROOT
# NCCL_LIB_DIR
# NCCL_INCLUDE_DIR
# specify where nccl is installed
#
# NVTOOLSEXT_PATH (Windows only)
# specify where nvtoolsext is installed
#
# LIBRARY_PATH
# LD_LIBRARY_PATH
# we will search for libraries in these paths
#
# ATEN_THREADING
# ATen parallel backend to use for intra- and inter-op parallelism
# possible values:
# OMP - use OpenMP for intra-op and native backend for inter-op tasks
# NATIVE - use native thread pool for both intra- and inter-op tasks
# TBB - using TBB for intra- and native thread pool for inter-op parallelism
#
# USE_TBB
# enable TBB support
#
# USE_SYSTEM_LIBS (work in progress)
# Use system-provided libraries to satisfy the build dependencies.
# When turned on, the following cmake variables will be toggled as well:
# USE_SYSTEM_CPUINFO=ON USE_SYSTEM_SLEEF=ON BUILD_CUSTOM_PROTOBUF=OFF
# This future is needed to print Python2 EOL message
from __future__ import print_function
import sys
if sys.version_info < (3,):
print("Python 2 has reached end-of-life and is no longer supported by PyTorch.")
sys.exit(-1)
if sys.platform == 'win32' and sys.maxsize.bit_length() == 31:
print("32-bit Windows Python runtime is not supported. Please switch to 64-bit Python.")
sys.exit(-1)
import platform
python_min_version = (3, 6, 2)
python_min_version_str = '.'.join(map(str, python_min_version))
if sys.version_info < python_min_version:
print("You are using Python {}. Python >={} is required.".format(platform.python_version(),
python_min_version_str))
sys.exit(-1)
from setuptools import setup, Extension, find_packages
from collections import defaultdict
from distutils import core
from distutils.core import Distribution
from distutils.errors import DistutilsArgError
import setuptools.command.build_ext
import setuptools.command.install
import distutils.command.clean
import distutils.sysconfig
import filecmp
import shutil
import subprocess
import os
import json
import glob
import importlib
from tools.build_pytorch_libs import build_caffe2
from tools.setup_helpers.env import (IS_WINDOWS, IS_DARWIN, IS_LINUX,
check_env_flag, build_type)
from tools.setup_helpers.cmake import CMake
from tools.generate_torch_version import get_torch_version
################################################################################
# Parameters parsed from environment
################################################################################
VERBOSE_SCRIPT = True
RUN_BUILD_DEPS = True
# see if the user passed a quiet flag to setup.py arguments and respect
# that in our parts of the build
EMIT_BUILD_WARNING = False
RERUN_CMAKE = False
CMAKE_ONLY = False
filtered_args = []
for i, arg in enumerate(sys.argv):
if arg == '--cmake':
RERUN_CMAKE = True
continue
if arg == '--cmake-only':
# Stop once cmake terminates. Leave users a chance to adjust build
# options.
CMAKE_ONLY = True
continue
if arg == 'rebuild' or arg == 'build':
arg = 'build' # rebuild is gone, make it build
EMIT_BUILD_WARNING = True
if arg == "--":
filtered_args += sys.argv[i:]
break
if arg == '-q' or arg == '--quiet':
VERBOSE_SCRIPT = False
if arg == 'clean' or arg == 'egg_info':
RUN_BUILD_DEPS = False
filtered_args.append(arg)
sys.argv = filtered_args
if VERBOSE_SCRIPT:
def report(*args):
print(*args)
else:
def report(*args):
pass
# Constant known variables used throughout this file
cwd = os.path.dirname(os.path.abspath(__file__))
lib_path = os.path.join(cwd, "torch", "lib")
third_party_path = os.path.join(cwd, "third_party")
caffe2_build_dir = os.path.join(cwd, "build")
# lib/pythonx.x/site-packages
rel_site_packages = distutils.sysconfig.get_python_lib(prefix='')
# full absolute path to the dir above
full_site_packages = distutils.sysconfig.get_python_lib()
# CMAKE: full path to python library
if IS_WINDOWS:
cmake_python_library = "{}/libs/python{}.lib".format(
distutils.sysconfig.get_config_var("prefix"),
distutils.sysconfig.get_config_var("VERSION"))
# Fix virtualenv builds
# TODO: Fix for python < 3.3
if not os.path.exists(cmake_python_library):
cmake_python_library = "{}/libs/python{}.lib".format(
sys.base_prefix,
distutils.sysconfig.get_config_var("VERSION"))
else:
cmake_python_library = "{}/{}".format(
distutils.sysconfig.get_config_var("LIBDIR"),
distutils.sysconfig.get_config_var("INSTSONAME"))
cmake_python_include_dir = distutils.sysconfig.get_python_inc()
################################################################################
# Version, create_version_file, and package_name
################################################################################
package_name = os.getenv('TORCH_PACKAGE_NAME', 'torch')
version = get_torch_version()
report("Building wheel {}-{}".format(package_name, version))
cmake = CMake()
# all the work we need to do _before_ setup runs
def build_deps():
report('-- Building version ' + version)
def check_file(f):
if bool(os.getenv("USE_SYSTEM_LIBS", False)):
return
if not os.path.exists(f):
report("Could not find {}".format(f))
report("Did you run 'git submodule update --init --recursive'?")
sys.exit(1)
check_file(os.path.join(third_party_path, "gloo", "CMakeLists.txt"))
check_file(os.path.join(third_party_path, 'cpuinfo', 'CMakeLists.txt'))
check_file(os.path.join(third_party_path, 'tbb', 'Makefile'))
check_file(os.path.join(third_party_path, 'onnx', 'CMakeLists.txt'))
check_file(os.path.join(third_party_path, 'foxi', 'CMakeLists.txt'))
check_file(os.path.join(third_party_path, 'QNNPACK', 'CMakeLists.txt'))
check_file(os.path.join(third_party_path, 'fbgemm', 'CMakeLists.txt'))
check_file(os.path.join(third_party_path, 'fbgemm', 'third_party',
'asmjit', 'CMakeLists.txt'))
check_file(os.path.join(third_party_path, 'onnx', 'third_party',
'benchmark', 'CMakeLists.txt'))
check_pydep('yaml', 'pyyaml')
build_caffe2(version=version,
cmake_python_library=cmake_python_library,
build_python=True,
rerun_cmake=RERUN_CMAKE,
cmake_only=CMAKE_ONLY,
cmake=cmake)
if CMAKE_ONLY:
report('Finished running cmake. Run "ccmake build" or '
'"cmake-gui build" to adjust build options and '
'"python setup.py install" to build.')
sys.exit()
# Use copies instead of symbolic files.
# Windows has very poor support for them.
sym_files = [
'tools/shared/_utils_internal.py',
'torch/utils/benchmark/utils/valgrind_wrapper/callgrind.h',
'torch/utils/benchmark/utils/valgrind_wrapper/valgrind.h',
]
orig_files = [
'torch/_utils_internal.py',
'third_party/valgrind-headers/callgrind.h',
'third_party/valgrind-headers/valgrind.h',
]
for sym_file, orig_file in zip(sym_files, orig_files):
same = False
if os.path.exists(sym_file):
if filecmp.cmp(sym_file, orig_file):
same = True
else:
os.remove(sym_file)
if not same:
shutil.copyfile(orig_file, sym_file)
################################################################################
# Building dependent libraries
################################################################################
# the list of runtime dependencies required by this built package
install_requires = [
'typing_extensions',
'dataclasses; python_version < "3.7"'
]
missing_pydep = '''
Missing build dependency: Unable to `import {importname}`.
Please install it via `conda install {module}` or `pip install {module}`
'''.strip()
def check_pydep(importname, module):
try:
importlib.import_module(importname)
except ImportError:
raise RuntimeError(missing_pydep.format(importname=importname, module=module))
class build_ext(setuptools.command.build_ext.build_ext):
# Copy libiomp5.dylib inside the wheel package on OS X
def _embed_libiomp(self):
if not IS_DARWIN:
return
lib_dir = os.path.join(self.build_lib, 'torch', 'lib')
libtorch_cpu_path = os.path.join(lib_dir, 'libtorch_cpu.dylib')
if not os.path.exists(libtorch_cpu_path):
return
# Parse libtorch_cpu load commands
otool_cmds = subprocess.check_output(['otool', '-l', libtorch_cpu_path]).decode('utf-8').split('\n')
rpaths, libs = [], []
for idx, line in enumerate(otool_cmds):
if line.strip() == 'cmd LC_LOAD_DYLIB':
lib_name = otool_cmds[idx + 2].strip()
assert lib_name.startswith('name ')
libs.append(lib_name.split(' ', 1)[1].rsplit('(', 1)[0][:-1])
if line.strip() == 'cmd LC_RPATH':
rpath = otool_cmds[idx + 2].strip()
assert rpath.startswith('path ')
rpaths.append(rpath.split(' ', 1)[1].rsplit('(', 1)[0][:-1])
omp_lib_name = 'libiomp5.dylib'
if os.path.join('@rpath', omp_lib_name) not in libs:
return
# Copy libiomp5 from rpath locations
for rpath in rpaths:
source_lib = os.path.join(rpath, omp_lib_name)
if not os.path.exists(source_lib):
continue
target_lib = os.path.join(self.build_lib, 'torch', 'lib', omp_lib_name)
self.copy_file(source_lib, target_lib)
break
def run(self):
# Report build options. This is run after the build completes so # `CMakeCache.txt` exists and we can get an
# accurate report on what is used and what is not.
cmake_cache_vars = defaultdict(lambda: False, cmake.get_cmake_cache_variables())
if cmake_cache_vars['USE_NUMPY']:
report('-- Building with NumPy bindings')
else:
report('-- NumPy not found')
if cmake_cache_vars['USE_CUDNN']:
report('-- Detected cuDNN at ' +
cmake_cache_vars['CUDNN_LIBRARY'] + ', ' + cmake_cache_vars['CUDNN_INCLUDE_DIR'])
else:
report('-- Not using cuDNN')
if cmake_cache_vars['USE_CUDA']:
report('-- Detected CUDA at ' + cmake_cache_vars['CUDA_TOOLKIT_ROOT_DIR'])
else:
report('-- Not using CUDA')
if cmake_cache_vars['USE_MKLDNN']:
report('-- Using MKLDNN')
if cmake_cache_vars['USE_MKLDNN_CBLAS']:
report('-- Using CBLAS in MKLDNN')
else:
report('-- Not using CBLAS in MKLDNN')
else:
report('-- Not using MKLDNN')
if cmake_cache_vars['USE_NCCL'] and cmake_cache_vars['USE_SYSTEM_NCCL']:
report('-- Using system provided NCCL library at {}, {}'.format(cmake_cache_vars['NCCL_LIBRARIES'],
cmake_cache_vars['NCCL_INCLUDE_DIRS']))
elif cmake_cache_vars['USE_NCCL']:
report('-- Building NCCL library')
else:
report('-- Not using NCCL')
if cmake_cache_vars['USE_DISTRIBUTED']:
if IS_WINDOWS:
report('-- Building without distributed package')
else:
report('-- Building with distributed package ')
else:
report('-- Building without distributed package')
# Do not use clang to compile extensions if `-fstack-clash-protection` is defined
# in system CFLAGS
system_c_flags = distutils.sysconfig.get_config_var('CFLAGS')
if IS_LINUX and '-fstack-clash-protection' in system_c_flags and 'clang' in os.environ.get('CC', ''):
os.environ['CC'] = distutils.sysconfig.get_config_var('CC')
# It's an old-style class in Python 2.7...
setuptools.command.build_ext.build_ext.run(self)
self._embed_libiomp()
# Copy the essential export library to compile C++ extensions.
if IS_WINDOWS:
build_temp = self.build_temp
ext_filename = self.get_ext_filename('_C')
lib_filename = '.'.join(ext_filename.split('.')[:-1]) + '.lib'
export_lib = os.path.join(
build_temp, 'torch', 'csrc', lib_filename).replace('\\', '/')
build_lib = self.build_lib
target_lib = os.path.join(
build_lib, 'torch', 'lib', '_C.lib').replace('\\', '/')
# Create "torch/lib" directory if not exists.
# (It is not created yet in "develop" mode.)
target_dir = os.path.dirname(target_lib)
if not os.path.exists(target_dir):
os.makedirs(target_dir)
self.copy_file(export_lib, target_lib)
def build_extensions(self):
self.create_compile_commands()
# The caffe2 extensions are created in
# tmp_install/lib/pythonM.m/site-packages/caffe2/python/
# and need to be copied to build/lib.linux.... , which will be a
# platform dependent build folder created by the "build" command of
# setuptools. Only the contents of this folder are installed in the
# "install" command by default.
# We only make this copy for Caffe2's pybind extensions
caffe2_pybind_exts = [
'caffe2.python.caffe2_pybind11_state',
'caffe2.python.caffe2_pybind11_state_gpu',
'caffe2.python.caffe2_pybind11_state_hip',
]
i = 0
while i < len(self.extensions):
ext = self.extensions[i]
if ext.name not in caffe2_pybind_exts:
i += 1
continue
fullname = self.get_ext_fullname(ext.name)
filename = self.get_ext_filename(fullname)
report("\nCopying extension {}".format(ext.name))
src = os.path.join("torch", rel_site_packages, filename)
if not os.path.exists(src):
report("{} does not exist".format(src))
del self.extensions[i]
else:
dst = os.path.join(os.path.realpath(self.build_lib), filename)
report("Copying {} from {} to {}".format(ext.name, src, dst))
dst_dir = os.path.dirname(dst)
if not os.path.exists(dst_dir):
os.makedirs(dst_dir)
self.copy_file(src, dst)
i += 1
distutils.command.build_ext.build_ext.build_extensions(self)
def get_outputs(self):
outputs = distutils.command.build_ext.build_ext.get_outputs(self)
outputs.append(os.path.join(self.build_lib, "caffe2"))
report("setup.py::get_outputs returning {}".format(outputs))
return outputs
def create_compile_commands(self):
def load(filename):
with open(filename) as f:
return json.load(f)
ninja_files = glob.glob('build/*compile_commands.json')
cmake_files = glob.glob('torch/lib/build/*/compile_commands.json')
all_commands = [entry
for f in ninja_files + cmake_files
for entry in load(f)]
# cquery does not like c++ compiles that start with gcc.
# It forgets to include the c++ header directories.
# We can work around this by replacing the gcc calls that python
# setup.py generates with g++ calls instead
for command in all_commands:
if command['command'].startswith("gcc "):
command['command'] = "g++ " + command['command'][4:]
new_contents = json.dumps(all_commands, indent=2)
contents = ''
if os.path.exists('compile_commands.json'):
with open('compile_commands.json', 'r') as f:
contents = f.read()
if contents != new_contents:
with open('compile_commands.json', 'w') as f:
f.write(new_contents)
class install(setuptools.command.install.install):
def run(self):
setuptools.command.install.install.run(self)
class clean(distutils.command.clean.clean):
def run(self):
import glob
import re
with open('.gitignore', 'r') as f:
ignores = f.read()
pat = re.compile(r'^#( BEGIN NOT-CLEAN-FILES )?')
for wildcard in filter(None, ignores.split('\n')):
match = pat.match(wildcard)
if match:
if match.group(1):
# Marker is found and stop reading .gitignore.
break
# Ignore lines which begin with '#'.
else:
for filename in glob.glob(wildcard):
try:
os.remove(filename)
except OSError:
shutil.rmtree(filename, ignore_errors=True)
# It's an old-style class in Python 2.7...
distutils.command.clean.clean.run(self)
def configure_extension_build():
r"""Configures extension build options according to system environment and user's choice.
Returns:
The input to parameters ext_modules, cmdclass, packages, and entry_points as required in setuptools.setup.
"""
try:
cmake_cache_vars = defaultdict(lambda: False, cmake.get_cmake_cache_variables())
except FileNotFoundError:
# CMakeCache.txt does not exist. Probably running "python setup.py clean" over a clean directory.
cmake_cache_vars = defaultdict(lambda: False)
################################################################################
# Configure compile flags
################################################################################
library_dirs = []
extra_install_requires = []
if IS_WINDOWS:
# /NODEFAULTLIB makes sure we only link to DLL runtime
# and matches the flags set for protobuf and ONNX
extra_link_args = ['/NODEFAULTLIB:LIBCMT.LIB']
# /MD links against DLL runtime
# and matches the flags set for protobuf and ONNX
# /EHsc is about standard C++ exception handling
# /DNOMINMAX removes builtin min/max functions
# /wdXXXX disables warning no. XXXX
extra_compile_args = ['/MD', '/EHsc', '/DNOMINMAX',
'/wd4267', '/wd4251', '/wd4522', '/wd4522', '/wd4838',
'/wd4305', '/wd4244', '/wd4190', '/wd4101', '/wd4996',
'/wd4275']
else:
extra_link_args = []
extra_compile_args = [
'-Wall',
'-Wextra',
'-Wno-strict-overflow',
'-Wno-unused-parameter',
'-Wno-missing-field-initializers',
'-Wno-write-strings',
'-Wno-unknown-pragmas',
# This is required for Python 2 declarations that are deprecated in 3.
'-Wno-deprecated-declarations',
# Python 2.6 requires -fno-strict-aliasing, see
# http://legacy.python.org/dev/peps/pep-3123/
# We also depend on it in our code (even Python 3).
'-fno-strict-aliasing',
# Clang has an unfixed bug leading to spurious missing
# braces warnings, see
# https://bugs.llvm.org/show_bug.cgi?id=21629
'-Wno-missing-braces',
]
if check_env_flag('WERROR'):
extra_compile_args.append('-Werror')
library_dirs.append(lib_path)
main_compile_args = []
main_libraries = ['torch_python']
main_link_args = []
main_sources = ["torch/csrc/stub.c"]
if cmake_cache_vars['USE_CUDA']:
library_dirs.append(
os.path.dirname(cmake_cache_vars['CUDA_CUDA_LIB']))
if cmake_cache_vars['USE_NUMPY']:
extra_install_requires += ['numpy']
if build_type.is_debug():
if IS_WINDOWS:
extra_compile_args.append('/Z7')
extra_link_args.append('/DEBUG:FULL')
else:
extra_compile_args += ['-O0', '-g']
extra_link_args += ['-O0', '-g']
if build_type.is_rel_with_deb_info():
if IS_WINDOWS:
extra_compile_args.append('/Z7')
extra_link_args.append('/DEBUG:FULL')
else:
extra_compile_args += ['-g']
extra_link_args += ['-g']
def make_relative_rpath_args(path):
if IS_DARWIN:
return ['-Wl,-rpath,@loader_path/' + path]
elif IS_WINDOWS:
return []
else:
return ['-Wl,-rpath,$ORIGIN/' + path]
################################################################################
# Declare extensions and package
################################################################################
extensions = []
packages = find_packages(exclude=('tools', 'tools.*'))
C = Extension("torch._C",
libraries=main_libraries,
sources=main_sources,
language='c',
extra_compile_args=main_compile_args + extra_compile_args,
include_dirs=[],
library_dirs=library_dirs,
extra_link_args=extra_link_args + main_link_args + make_relative_rpath_args('lib'))
extensions.append(C)
if not IS_WINDOWS:
DL = Extension("torch._dl",
sources=["torch/csrc/dl.c"],
language='c')
extensions.append(DL)
# These extensions are built by cmake and copied manually in build_extensions()
# inside the build_ext implementation
extensions.append(
Extension(
name=str('caffe2.python.caffe2_pybind11_state'),
sources=[]),
)
if cmake_cache_vars['USE_CUDA']:
extensions.append(
Extension(
name=str('caffe2.python.caffe2_pybind11_state_gpu'),
sources=[]),
)
if cmake_cache_vars['USE_ROCM']:
extensions.append(
Extension(
name=str('caffe2.python.caffe2_pybind11_state_hip'),
sources=[]),
)
cmdclass = {
'build_ext': build_ext,
'clean': clean,
'install': install,
}
entry_points = {
'console_scripts': [
'convert-caffe2-to-onnx = caffe2.python.onnx.bin.conversion:caffe2_to_onnx',
'convert-onnx-to-caffe2 = caffe2.python.onnx.bin.conversion:onnx_to_caffe2',
]
}
return extensions, cmdclass, packages, entry_points, extra_install_requires
# post run, warnings, printed at the end to make them more visible
build_update_message = """
It is no longer necessary to use the 'build' or 'rebuild' targets
To install:
$ python setup.py install
To develop locally:
$ python setup.py develop
To force cmake to re-generate native build files (off by default):
$ python setup.py develop --cmake
"""
def print_box(msg):
lines = msg.split('\n')
size = max(len(l) + 1 for l in lines)
print('-' * (size + 2))
for l in lines:
print('|{}{}|'.format(l, ' ' * (size - len(l))))
print('-' * (size + 2))
if __name__ == '__main__':
# Parse the command line and check the arguments
# before we proceed with building deps and setup
dist = Distribution()
dist.script_name = sys.argv[0]
dist.script_args = sys.argv[1:]
try:
ok = dist.parse_command_line()
except DistutilsArgError as msg:
raise SystemExit(core.gen_usage(dist.script_name) + "\nerror: %s" % msg)
if not ok:
sys.exit()
if RUN_BUILD_DEPS:
build_deps()
extensions, cmdclass, packages, entry_points, extra_install_requires = configure_extension_build()
install_requires += extra_install_requires
# Read in README.md for our long_description
with open(os.path.join(cwd, "README.md"), encoding="utf-8") as f:
long_description = f.read()
version_range_max = max(sys.version_info[1], 8) + 1
setup(
name=package_name,
version=version,
description=("Tensors and Dynamic neural networks in "
"Python with strong GPU acceleration"),
long_description=long_description,
long_description_content_type="text/markdown",
ext_modules=extensions,
cmdclass=cmdclass,
packages=packages,
entry_points=entry_points,
install_requires=install_requires,
package_data={
'torch': [
'py.typed',
'bin/*',
'test/*',
'_C/*.pyi',
'cuda/*.pyi',
'optim/*.pyi',
'autograd/*.pyi',
'utils/data/*.pyi',
'nn/*.pyi',
'nn/modules/*.pyi',
'nn/parallel/*.pyi',
'lib/*.so*',
'lib/*.dylib*',
'lib/*.dll',
'lib/*.lib',
'lib/*.pdb',
'lib/torch_shm_manager',
'lib/*.h',
'include/ATen/*.h',
'include/ATen/cpu/*.h',
'include/ATen/cpu/vec256/*.h',
'include/ATen/core/*.h',
'include/ATen/cuda/*.cuh',
'include/ATen/cuda/*.h',
'include/ATen/cuda/detail/*.cuh',
'include/ATen/cuda/detail/*.h',
'include/ATen/cudnn/*.h',
'include/ATen/hip/*.cuh',
'include/ATen/hip/*.h',
'include/ATen/hip/detail/*.cuh',
'include/ATen/hip/detail/*.h',
'include/ATen/hip/impl/*.h',
'include/ATen/detail/*.h',
'include/ATen/native/*.h',
'include/ATen/native/cpu/*.h',
'include/ATen/native/cuda/*.h',
'include/ATen/native/cuda/*.cuh',
'include/ATen/native/hip/*.h',
'include/ATen/native/hip/*.cuh',
'include/ATen/native/quantized/*.h',
'include/ATen/native/quantized/cpu/*.h',
'include/ATen/quantized/*.h',
'include/caffe2/utils/*.h',
'include/caffe2/utils/**/*.h',
'include/c10/*.h',
'include/c10/macros/*.h',
'include/c10/core/*.h',
'include/ATen/core/boxing/*.h',
'include/ATen/core/boxing/impl/*.h',
'include/ATen/core/dispatch/*.h',
'include/ATen/core/op_registration/*.h',
'include/c10/core/impl/*.h',
'include/c10/util/*.h',
'include/c10/cuda/*.h',
'include/c10/cuda/impl/*.h',
'include/c10/hip/*.h',
'include/c10/hip/impl/*.h',
'include/c10d/*.hpp',
'include/caffe2/**/*.h',
'include/torch/*.h',
'include/torch/csrc/*.h',
'include/torch/csrc/api/include/torch/*.h',
'include/torch/csrc/api/include/torch/data/*.h',
'include/torch/csrc/api/include/torch/data/dataloader/*.h',
'include/torch/csrc/api/include/torch/data/datasets/*.h',
'include/torch/csrc/api/include/torch/data/detail/*.h',
'include/torch/csrc/api/include/torch/data/samplers/*.h',
'include/torch/csrc/api/include/torch/data/transforms/*.h',
'include/torch/csrc/api/include/torch/detail/*.h',
'include/torch/csrc/api/include/torch/detail/ordered_dict.h',
'include/torch/csrc/api/include/torch/nn/*.h',
'include/torch/csrc/api/include/torch/nn/functional/*.h',
'include/torch/csrc/api/include/torch/nn/options/*.h',
'include/torch/csrc/api/include/torch/nn/modules/*.h',
'include/torch/csrc/api/include/torch/nn/modules/container/*.h',
'include/torch/csrc/api/include/torch/nn/parallel/*.h',
'include/torch/csrc/api/include/torch/nn/utils/*.h',
'include/torch/csrc/api/include/torch/optim/*.h',
'include/torch/csrc/api/include/torch/serialize/*.h',
'include/torch/csrc/autograd/*.h',
'include/torch/csrc/autograd/functions/*.h',
'include/torch/csrc/autograd/generated/*.h',
'include/torch/csrc/autograd/utils/*.h',
'include/torch/csrc/cuda/*.h',
'include/torch/csrc/jit/*.h',
'include/torch/csrc/jit/backends/*.h',
'include/torch/csrc/jit/generated/*.h',
'include/torch/csrc/jit/passes/*.h',
'include/torch/csrc/jit/passes/quantization/*.h',
'include/torch/csrc/jit/passes/utils/*.h',
'include/torch/csrc/jit/runtime/*.h',
'include/torch/csrc/jit/ir/*.h',
'include/torch/csrc/jit/frontend/*.h',
'include/torch/csrc/jit/api/*.h',
'include/torch/csrc/jit/serialization/*.h',
'include/torch/csrc/jit/python/*.h',
'include/torch/csrc/jit/testing/*.h',
'include/torch/csrc/jit/tensorexpr/*.h',
'include/torch/csrc/onnx/*.h',
'include/torch/csrc/utils/*.h',
'include/pybind11/*.h',
'include/pybind11/detail/*.h',
'include/TH/*.h*',
'include/TH/generic/*.h*',
'include/THC/*.cuh',
'include/THC/*.h*',
'include/THC/generic/*.h',
'include/THCUNN/*.cuh',
'include/THCUNN/generic/*.h',
'include/THH/*.cuh',
'include/THH/*.h*',
'include/THH/generic/*.h',
'share/cmake/ATen/*.cmake',
'share/cmake/Caffe2/*.cmake',
'share/cmake/Caffe2/public/*.cmake',
'share/cmake/Caffe2/Modules_CUDA_fix/*.cmake',
'share/cmake/Caffe2/Modules_CUDA_fix/upstream/*.cmake',
'share/cmake/Caffe2/Modules_CUDA_fix/upstream/FindCUDA/*.cmake',
'share/cmake/Gloo/*.cmake',
'share/cmake/Tensorpipe/*.cmake',
'share/cmake/Torch/*.cmake',
'utils/benchmark/utils/*.cpp',
'utils/benchmark/utils/valgrind_wrapper/*.cpp',
'utils/benchmark/utils/valgrind_wrapper/*.h',
],
'caffe2': [
'python/serialized_test/data/operator_test/*.zip',
],
},
url='https://pytorch.org/',
download_url='https://github.com/pytorch/pytorch/tags',
author='PyTorch Team',
author_email='packages@pytorch.org',
python_requires='>={}'.format(python_min_version_str),
# PyPI package information.
classifiers=[
'Development Status :: 5 - Production/Stable',
'Intended Audience :: Developers',
'Intended Audience :: Education',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: BSD License',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Mathematics',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Software Development',
'Topic :: Software Development :: Libraries',
'Topic :: Software Development :: Libraries :: Python Modules',
'Programming Language :: C++',
'Programming Language :: Python :: 3',
] + ['Programming Language :: Python :: 3.{}'.format(i) for i in range(python_min_version[1], version_range_max)],
license='BSD-3',
keywords='pytorch machine learning',
)
if EMIT_BUILD_WARNING:
print_box(build_update_message)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。