代码拉取完成,页面将自动刷新
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
FROM nvcr.io/nvidia/pytorch:20.03-py3
# Install dependencies (pip or conda)
RUN pip install -U gsutil
# RUN pip install -U -r requirements.txt
# Create working directory
RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app
# Copy contents
COPY . /usr/src/app
# Copy weights
#RUN python3 -c "from models import *; \
#attempt_download('weights/yolov5s.pt'); \
#attempt_download('weights/yolov5m.pt'); \
#attempt_download('weights/yolov5l.pt')"
# --------------------------------------------------- Extras Below ---------------------------------------------------
# Build and Push
# t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
# Pull and Run
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host $t bash
# Pull and Run with local directory access
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t bash
# Kill all
# sudo docker kill "$(sudo docker ps -q)"
# Kill all image-based
# sudo docker kill $(sudo docker ps -a -q --filter ancestor=ultralytics/yolov5:latest)
# Run bash for loop
# sudo docker run --gpus all --ipc=host ultralytics/yolov5:latest while true; do python3 train.py --evolve; done
# Bash into running container
# sudo docker container exec -it ba65811811ab bash
# python -c "from utils.utils import *; create_backbone('weights/last.pt')" && gsutil cp weights/backbone.pt gs://*
# Bash into stopped container
# sudo docker commit 6d525e299258 user/test_image && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco --entrypoint=sh user/test_image
# Clean up
# docker system prune -a --volumes
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。