代码拉取完成,页面将自动刷新
// Copyright 2008 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
An example running of this program:
mpiexec -n 2 ./mpi_lda \
--num_topics 2 \
--alpha 0.1 \
--beta 0.01 \
--training_data_file ./testdata/test_data.txt \
--model_file /tmp/lda_model.txt \
--burn_in_iterations 100 \
--total_iterations 150
*/
#include "mpi.h"
#include <algorithm>
#include <fstream>
#include <set>
#include <vector>
#include <sstream>
#include <string>
#include "common.h"
#include "document.h"
#include "model.h"
#include "accumulative_model.h"
#include "sampler.h"
#include "cmd_flags.h"
using std::ifstream;
using std::ofstream;
using std::istringstream;
using std::set;
using std::vector;
using std::list;
using std::map;
using std::sort;
using std::string;
using learning_lda::LDADocument;
namespace learning_lda {
// A wrapper of MPI_Allreduce. If the vector is over 32M, we allreduce part
// after part. This will save temporary memory needed.
void AllReduceTopicDistribution(int64* buf, int count) {
static int kMaxDataCount = 1 << 22;
static int datatype_size = sizeof(*buf);
if (count > kMaxDataCount) {
char* tmp_buf = new char[datatype_size * kMaxDataCount];
for (int i = 0; i < count / kMaxDataCount; ++i) {
MPI_Allreduce(reinterpret_cast<char*>(buf) +
datatype_size * kMaxDataCount * i,
tmp_buf,
kMaxDataCount, MPI_LONG_LONG, MPI_SUM, MPI_COMM_WORLD);
memcpy(reinterpret_cast<char*>(buf) +
datatype_size * kMaxDataCount * i, tmp_buf,
kMaxDataCount * datatype_size);
}
// If count is not divisible by kMaxDataCount, there are some elements left
// to be reduced.
if (count % kMaxDataCount > 0) {
MPI_Allreduce(reinterpret_cast<char*>(buf)
+ datatype_size * kMaxDataCount * (count / kMaxDataCount),
tmp_buf,
count - kMaxDataCount * (count / kMaxDataCount), MPI_LONG_LONG, MPI_SUM,
MPI_COMM_WORLD);
memcpy(reinterpret_cast<char*>(buf)
+ datatype_size * kMaxDataCount * (count / kMaxDataCount),
tmp_buf,
(count - kMaxDataCount * (count / kMaxDataCount)) * datatype_size);
}
delete[] tmp_buf;
} else {
char* tmp_buf = new char[datatype_size * count];
MPI_Allreduce(buf, tmp_buf, count, MPI_LONG_LONG, MPI_SUM, MPI_COMM_WORLD);
memcpy(buf, tmp_buf, datatype_size * count);
delete[] tmp_buf;
}
}
class ParallelLDAModel : public LDAModel {
public:
ParallelLDAModel(int num_topic, const map<string, int>& word_index_map)
: LDAModel(num_topic, word_index_map) {
}
void ComputeAndAllReduce(const LDACorpus& corpus) {
for (list<LDADocument*>::const_iterator iter = corpus.begin();
iter != corpus.end();
++iter) {
LDADocument* document = *iter;
for (LDADocument::WordOccurrenceIterator iter2(document);
!iter2.Done(); iter2.Next()) {
IncrementTopic(iter2.Word(), iter2.Topic(), 1);
}
}
AllReduceTopicDistribution(&memory_alloc_[0], memory_alloc_.size());
}
};
int DistributelyLoadAndInitTrainingCorpus(
const string& corpus_file,
int num_topics,
int myid, int pnum, LDACorpus* corpus, set<string>* words) {
corpus->clear();
ifstream fin(corpus_file.c_str());
string line;
int index = 0;
while (getline(fin, line)) { // Each line is a training document.
if (line.size() > 0 && // Skip empty lines.
line[0] != '\r' && // Skip empty lines.
line[0] != '\n' && // Skip empty lines.
line[0] != '#') { // Skip comment lines.
istringstream ss(line);
if (index % pnum == myid) {
// This is a document that I need to store in local memory.
DocumentWordTopicsPB document;
string word;
int count;
set<string> words_in_document;
while (ss >> word >> count) { // Load and init a document.
vector<int32> topics;
for (int i = 0; i < count; ++i) {
topics.push_back(RandInt(num_topics));
}
document.add_wordtopics(word, -1, topics);
words_in_document.insert(word);
words->insert(word);
}
if (words_in_document.size() > 0) {
corpus->push_back(new LDADocument(document, num_topics));
}
} else {
// This is a document that should be stored by other processors. I just
// need to read the words and build the word set.
string word;
int count;
while (ss >> word >> count) { // Only fill words into word_set
words->insert(word);
}
}
index++;
}
}
return corpus->size();
}
void FreeCorpus(LDACorpus* corpus) {
for (list<LDADocument*>::iterator iter = corpus->begin();
iter != corpus->end();
++iter) {
if (*iter != NULL) {
delete *iter;
*iter = NULL;
}
}
}
}
int main(int argc, char** argv) {
using learning_lda::LDACorpus;
using learning_lda::LDAModel;
using learning_lda::ParallelLDAModel;
using learning_lda::LDASampler;
using learning_lda::DistributelyLoadAndInitTrainingCorpus;
using learning_lda::LDACmdLineFlags;
int myid, pnum;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
MPI_Comm_size(MPI_COMM_WORLD, &pnum);
LDACmdLineFlags flags;
flags.ParseCmdFlags(argc, argv);
if (!flags.CheckParallelTrainingValidity()) {
return -1;
}
srand(time(NULL));
LDACorpus corpus;
set<string> allwords;
CHECK_GT(DistributelyLoadAndInitTrainingCorpus(flags.training_data_file_,
flags.num_topics_,
myid, pnum, &corpus, &allwords), 0);
std::cout << "Training data loaded" << std::endl;
// Make vocabulary words sorted and give each word an int index.
vector<string> sorted_words;
map<string, int> word_index_map;
for (set<string>::const_iterator iter = allwords.begin();
iter != allwords.end(); ++iter) {
sorted_words.push_back(*iter);
}
sort(sorted_words.begin(), sorted_words.end());
for (int i = 0; i < sorted_words.size(); ++i) {
word_index_map[sorted_words[i]] = i;
}
for (LDACorpus::iterator iter = corpus.begin(); iter != corpus.end();
++iter) {
(*iter)->ResetWordIndex(word_index_map);
}
for (int iter = 0; iter < flags.total_iterations_; ++iter) {
if (myid == 0) {
std::cout << "Iteration " << iter << " ...\n";
}
ParallelLDAModel model(flags.num_topics_, word_index_map);
model.ComputeAndAllReduce(corpus);
LDASampler sampler(flags.alpha_, flags.beta_, &model, NULL);
if (flags.compute_likelihood_ == "true") {
double loglikelihood_local = 0;
double loglikelihood_global = 0;
for (list<LDADocument*>::const_iterator iter = corpus.begin();
iter != corpus.end();
++iter) {
loglikelihood_local += sampler.LogLikelihood(*iter);
}
MPI_Allreduce(&loglikelihood_local, &loglikelihood_global, 1, MPI_DOUBLE,
MPI_SUM, MPI_COMM_WORLD);
if (myid == 0) {
std::cout << "Loglikelihood: " << loglikelihood_global << std::endl;
}
}
sampler.DoIteration(&corpus, true, false);
}
ParallelLDAModel model(flags.num_topics_, word_index_map);
model.ComputeAndAllReduce(corpus);
if (myid == 0) {
std::ofstream fout(flags.model_file_.c_str());
model.AppendAsString(fout);
}
FreeCorpus(&corpus);
MPI_Finalize();
return 0;
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。