代码拉取完成,页面将自动刷新
同步操作将从 DaimaXiaozi/MIRACL 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
NOTE: On Sparcs with hardware support for quad-precision long doubles,
it may be optimal to build a MIRACL library using a "double" underlying
type rather than use the approach described here. See double.txt
*************************************
These comments apply to the standard 32-bit SPARC (Version 8) processor with
hardware 32-bit multiplication. For 64-bit SPARC (Version 9) see below.
*************************************
If developing for the SPARC, or indeed any other new processor, you should
first build a C-only library.
For the SPARC, this mirdef.h header would be appropriate for an integer-
only build of the library.
--------------------------------------
/*
* MIRACL compiler/hardware definitions - mirdef.h
*/
#define MIRACL 32
#define MR_BIG_ENDIAN
#define mr_utype int
#define MR_IBITS 32
#define MR_LBITS 32
#define mr_dltype long long
#define mr_unsign32 unsigned int
#define mr_unsign64 unsigned long long
#define MAXBASE ((mr_small)1<<(MIRACL-1))
#define MR_NOASM
---------------------------------------------
Assuming that the mirdef.h, miracl.h and mr*.c files are all in the same
directory, then a suitable batch file for building a MIRACL library might
look like this:-
-------------------------------
gcc -I. -c -O2 mrcore.c
gcc -I. -c -O2 mrarth0.c
gcc -I. -c -O2 mrarth1.c
gcc -I. -c -O2 mrarth2.c
gcc -I. -c -O2 mralloc.c
gcc -I. -c -O2 mrsmall.c
gcc -I. -c -O2 mrio1.c
gcc -I. -c -O2 mrio2.c
gcc -I. -c -O2 mrgcd.c
gcc -I. -c -O2 mrjack.c
gcc -I. -c -O2 mrxgcd.c
gcc -I. -c -O2 mrarth3.c
gcc -I. -c -O2 mrbits.c
gcc -I. -c -O2 mrrand.c
gcc -I. -c -O2 mrprime.c
gcc -I. -c -O2 mrcrt.c
gcc -I. -c -O2 mrscrt.c
gcc -I. -c -O2 mrmonty.c
gcc -I. -c -O2 mrpower.c
gcc -I. -c -O2 mrsroot.c
gcc -I. -c -O2 mrcurve.c
gcc -I. -c -O2 mrfast.c
gcc -I. -c -O2 mrzzn2.c
gcc -I. -c -O2 mrzzn2b.c
gcc -I. -c -O2 mrzzn3.c
gcc -I. -c -O2 mrecn2.c
gcc -I. -c -O2 mrshs.c
gcc -I. -c -O2 mrshs256.c
gcc -I. -c -O2 mrshs512.c
gcc -I. -c -O2 mraes.c
gcc -I. -c -O2 mrlucas.c
gcc -I. -c -O2 mrstrong.c
gcc -I. -c -O2 mrbrick.c
gcc -I. -c -O2 mrebrick.c
gcc -I. -c -O2 mrec2m.c
gcc -I. -c -O2 mrgf2m.c
ar rc miracl.a mrcore.o mrarth0.o mrarth1.o mrarth2.o mralloc.o mrsmall.o
ar r miracl.a mrio1.o mrio2.o mrjack.o mrgcd.o mrxgcd.o mrarth3.o mrsroot.o
ar r miracl.a mrrand.o mrprime.o mrcrt.o mrscrt.o mrmonty.o mrcurve.o
ar r miracl.a mrfast.o mrshs.o mraes.o mrlucas.o mrstrong.o mrbrick.o
ar r miracl.a mrebrick.o mrgf2m.o mrec2m.o mrpower.o mrzzn2b.o
ar r miracl.a mrshs256.o mrshs512.o mrbits.o mrzzn2.o mrzzn3.o mrecn2.o
del mr*.o
gcc -I.-O2 pk-demo.c miracl.a -o pk-demo
--------------------------------------------
This may be fast enough for you. If its not you can use the assembly language
macros provided in sparc32.mcs for greater speed. See kcmcomba.txt.
For faster RSA and DH implementations replace the MR_NOASM definition with
MR_KCM n (where n is usually 4, 8 or 16 - experiment. n*MIRACL must divide the
modulus size in bits exactly, which it will for standard moduli of 1024 bit
for example). Compile and run the utility mex.c
c:\miracl>mex n sparc32 mrkcm
(Yes its the same n). Rebuild the MIRACL library, but this time include the
modules mrkcm.c and mrmuldv.c (you can find the latter as mrmuldv.ccc This
standard C version will do, although the SPARC asm versions from mrmuldv.any
are faster. These would need to be assembled rather than compiled)
For fast GF(p) elliptic curves, replace MR_NOASM with MR_COMBA n. This time
32*n is exactly the size of p in bits (assuming 32-bit processor).
c:\miracl>mex n sparc32 mrcomba
Rebuild the MIRACL library, but this time include the modules mrcomba.c and
mrmuldv.c.
Still not fast enough? If the prime p is of a "special" form, define in
mirdef.h MR_SPECIAL. Edit mrcomba.tpl to insert "special" code for modular
reduction - its quite easy and you will find examples there already. Run
mex as before, and rebuild MIRACL again.
For processors other than the SPARC, the basic procedure is the same. A C-only
build is always possible. To go faster you will need to create a .mcs file
for your processor, and then you can proceed as above.
An alternative is to do a C-only build and then go in and optimise the
generated assembly language. The time-critical routines are usually
multiply() and redc() which can be found in mrarth2.c and mrmonty.c
This will probably not be as fast as the highly optimised approach outlined
above.
----------------------------------------------------------
64-bit SPARC (Version 9). Alas not a "real" 64-bit processor in the sense that
there is no 64x64=128 bit multiply instruction.
The standard C header files mirdef.h should in this case look like
--------------------------------------
/*
* MIRACL compiler/hardware definitions - mirdef.h
*/
#define MIRACL 32
#define MR_BIG_ENDIAN
#define mr_utype int
#define MR_IBITS 32
#define MR_LBITS 32
#define mr_dltype long
#define mr_unsign32 unsigned int
#define mr_unsign64 unsigned long
#define MAXBASE ((mr_small)1<<(MIRACL-1))
#define MR_NOASM
---------------------------------------------
Compile as above, but include compiler flag -m64. Also you may need to change
-O2 to -O1 - when I tried it -O2 optimization was broken.
For faster assembly language implementation proceed as above, but this time
use macros from sparc64.mcs
____________________________________________
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。