Aaron S. Jackson, Adrian Bulat, Vasileios Argyriou and Georgios Tzimiropoulos
Try out the code without running it! Check out our online demo here.
Please visit our project webpage for a link to the paper and an example video run on 300VW. This code is licenses under the MIT License, as described in the LICENSE file.
This is an unguided version of the Volumetric Regression Network (VRN) for 3D face reconstruction from a single image. This method approaches the problem of reconstruction as a segmentation problem, producing a 3D volume, spatially aligned with the input image. A mesh can then be obtained by taking the isosurface of this volume.
Several example images are included in the examples folder. Most of these are AFLW images taken from 3DDFA.
If you are running the code to calculate error for a potential publication, please use the MATLAB version, as this is what was used to compute the error for the paper.
A working installation of Torch7 is required. This can be easily installed on most platforms using torch/distro. You will also require a reasonable CUDA capable GPU.
This project was developed under Linux. I have no idea if it will work on Windows and it is unlikely that I will be able to help you with this. If you are running Mac OS, issue #1 might be of interest to you.
Quick overview of requirements:
Please be wary of the version numbers for CUDA, CuDNN and Python.
Bulat’s face alignment code is included as a submodule. Please check his README for dependencies.
git clone --recursive https://github.com/AaronJackson/vrn.git
cd vrn
./download.sh
MATLAB offers better functionality for taking the iso surface of the volume. It also has some code to calculate per-vertex colouring on the mesh. If you have MATLAB I recommend this route.
To run, type “run” from MATLAB.
No longer is MATLAB an absolute requirement! I’ve included a slightly
crazy (but don’t worry, I had fun writing it) shell script which
performs the face normalisation, and runs the vis.py
script to
render the regressed volume.
Unfortunately this does not yet apply any colouring or texture to the mesh (you’re welcome to contribute) and it has some issues if you don’t have a fully working OpenGL setup. Some GPUs won’t like the background image not being a power of two, so it might make the results look odd. I’ll work on this sometime.
To run it on the included example images without MATLAB, make the
run.sh
executable with chmod u+x run.sh
and type ./run.sh
from
your terminal.
You are, of course, welcome to try out this method on your own set of
images. dlib
, the face detector included with Bulat’s face alignment
code struggles to find side poses. You are welcome to modify the code
to provide bounding boxes.
The MATLAB “run.m” script contains a few options which you can change. Here is a very quick description of them:
input_folder
, as the name suggests, the folder to glob for JPEG
images.output_folder
, the directory to store the regressed volumes.model_file
, the name of the Torch model to load.gpunum
, specify which GPU to use, starting at 0.texture
, rudimentary texture mapping by taking the 2D projections
nearest neighbour (MATLAB only).I’ve had a few requests to describe a little better how to configure Torch so that everything works correctly. I’ve tested this on Fedora 24 and CentOS 7. I’m assuming it will also work on Ubuntu if you have the correct development packages installed.
If you prefer docker, simply run `docker build -t ‘vrn’ .`. For an interactive shell, `docker run -it vrn bash`. Commands may require sudo.
# Install some dependencies for later. I might have missed some
sudo yum install glog-devel boost-devel
pip install dlib matplotlib numpy visvis imageio
# Install the Torch distribution.
mkdir -p $HOME/usr/{local,src}
cd $HOME/usr/local
git clone https://github.com/torch/distro.git
mv distro torch
cd torch
sudo ./install-deps
./install.sh
source $HOME/usr/local/torch/install/bin/torch-activate
# Install THPP and fb.python for the face alignment code
cd $HOME/usr/src
git clone https://github.com/1adrianb/thpp.git
cd thpp/thpp
THPP_NOFB=1 ./build.sh
# Install fb.python.
cd $HOME/usr/src
git clone https://github.com/facebook/fblualib.git
cd fblualib/fblualib/python
luarocks make rockspec/*
cd $HOME
git clone --recursive https://github.com/AaronJackson/vrn.git
cd vrn
./download.sh
./run.sh
@article{jackson2017vrn, title={Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression}, author={Jackson, Aaron S and Bulat, Adrian and Argyriou, Vasileios and Tzimiropoulos, Georgios}, journal={International Conference on Computer Vision}, year={2017} }
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。