代码拉取完成,页面将自动刷新
# pylint: disable=missing-module-docstring
import re
from pkg_resources import get_distribution, DistributionNotFound
from setuptools import setup, find_packages
long_description = """A library for image augmentation in machine learning experiments, particularly convolutional
neural networks. Supports the augmentation of images, keypoints/landmarks, bounding boxes, heatmaps and segmentation
maps in a variety of different ways."""
INSTALL_REQUIRES = [
"six",
"numpy>=1.15",
"scipy",
"Pillow",
"matplotlib",
"scikit-image>=0.14.2",
"opencv-python-headless",
"imageio<=2.6.1; python_version<'3.5'",
"imageio; python_version>='3.5'",
"Shapely"
]
ALT_INSTALL_REQUIRES = {
"opencv-python-headless": ["opencv-python", "opencv-contrib-python", "opencv-contrib-python-headless"],
}
def check_alternative_installation(install_require, alternative_install_requires):
"""If some version version of alternative requirement installed, return alternative,
else return main.
"""
for alternative_install_require in alternative_install_requires:
try:
alternative_pkg_name = re.split(r"[!<>=]", alternative_install_require)[0]
get_distribution(alternative_pkg_name)
return str(alternative_install_require)
except DistributionNotFound:
continue
return str(install_require)
def get_install_requirements(main_requires, alternative_requires):
"""Iterates over all install requires
If an install require has an alternative option, check if this option is installed
If that is the case, replace the install require by the alternative to not install dual package"""
install_requires = []
for main_require in main_requires:
if main_require in alternative_requires:
main_require = check_alternative_installation(main_require, alternative_requires.get(main_require))
install_requires.append(main_require)
return install_requires
INSTALL_REQUIRES = get_install_requirements(INSTALL_REQUIRES, ALT_INSTALL_REQUIRES)
setup(
name="imgaug",
version="0.4.0",
author="Alexander Jung",
author_email="kontakt@ajung.name",
url="https://github.com/aleju/imgaug",
download_url="https://github.com/aleju/imgaug/archive/0.4.0.tar.gz",
install_requires=INSTALL_REQUIRES,
packages=find_packages(),
include_package_data=True,
package_data={
"": ["LICENSE", "README.md", "requirements.txt"],
"imgaug": ["DejaVuSans.ttf", "quokka.jpg", "quokka_annotations.json", "quokka_depth_map_halfres.png"],
"imgaug.checks": ["README.md"]
},
license="MIT",
description="Image augmentation library for deep neural networks",
long_description=long_description,
keywords=["augmentation", "image", "deep learning", "neural network", "CNN", "machine learning",
"computer vision", "overfitting"],
classifiers=[
"Development Status :: 4 - Beta",
"Intended Audience :: Science/Research",
"Intended Audience :: Developers",
"Intended Audience :: Information Technology",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Operating System :: OS Independent",
"Programming Language :: Python :: 2.7",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.4",
"Programming Language :: Python :: 3.5",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Scientific/Engineering :: Image Recognition",
"Topic :: Software Development :: Libraries :: Python Modules"
]
)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。