1 Star 1 Fork 0

刘仁杰/Facial-Expression-Recognition.Pytorch

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
mainpro_CK+.py 5.97 KB
一键复制 编辑 原始数据 按行查看 历史
WuJie 提交于 2018-07-15 14:45 . Add files via upload
'''Train CK+ with PyTorch.'''
# 10 crop for data enhancement
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import transforms as transforms
import numpy as np
import os
import argparse
import utils
from CK import CK
from torch.autograd import Variable
from models import *
parser = argparse.ArgumentParser(description='PyTorch CK+ CNN Training')
parser.add_argument('--model', type=str, default='VGG19', help='CNN architecture')
parser.add_argument('--dataset', type=str, default='CK+', help='dataset')
parser.add_argument('--fold', default=1, type=int, help='k fold number')
parser.add_argument('--bs', default=128, type=int, help='batch_size')
parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
opt = parser.parse_args()
use_cuda = torch.cuda.is_available()
best_Test_acc = 0 # best PrivateTest accuracy
best_Test_acc_epoch = 0
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
learning_rate_decay_start = 20 # 50
learning_rate_decay_every = 1 # 5
learning_rate_decay_rate = 0.8 # 0.9
cut_size = 44
total_epoch = 60
path = os.path.join(opt.dataset + '_' + opt.model, str(opt.fold))
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(cut_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
transform_test = transforms.Compose([
transforms.TenCrop(cut_size),
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
])
trainset = CK(split = 'Training', fold = opt.fold, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=opt.bs, shuffle=True, num_workers=1)
testset = CK(split = 'Testing', fold = opt.fold, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=5, shuffle=False, num_workers=1)
# Model
if opt.model == 'VGG19':
net = VGG('VGG19')
elif opt.model == 'Resnet18':
net = ResNet18()
if opt.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir(path), 'Error: no checkpoint directory found!'
checkpoint = torch.load(os.path.join(path,'Test_model.t7'))
net.load_state_dict(checkpoint['net'])
best_Test_acc = checkpoint['best_Test_acc']
best_Test_acc_epoch = checkpoint['best_Test_acc_epoch']
start_epoch = best_Test_acc_epoch + 1
else:
print('==> Building model..')
if use_cuda:
net.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=opt.lr, momentum=0.9, weight_decay=5e-4)
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
global Train_acc
net.train()
train_loss = 0
correct = 0
total = 0
if epoch > learning_rate_decay_start and learning_rate_decay_start >= 0:
frac = (epoch - learning_rate_decay_start) // learning_rate_decay_every
decay_factor = learning_rate_decay_rate ** frac
current_lr = opt.lr * decay_factor
utils.set_lr(optimizer, current_lr) # set the decayed rate
else:
current_lr = opt.lr
print('learning_rate: %s' % str(current_lr))
for batch_idx, (inputs, targets) in enumerate(trainloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
optimizer.zero_grad()
inputs, targets = Variable(inputs), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
utils.clip_gradient(optimizer, 0.1)
optimizer.step()
train_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
utils.progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
Train_acc = 100.*correct/total
def test(epoch):
global Test_acc
global best_Test_acc
global best_Test_acc_epoch
net.eval()
PrivateTest_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(testloader):
bs, ncrops, c, h, w = np.shape(inputs)
inputs = inputs.view(-1, c, h, w)
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs, volatile=True), Variable(targets)
outputs = net(inputs)
outputs_avg = outputs.view(bs, ncrops, -1).mean(1) # avg over crops
loss = criterion(outputs_avg, targets)
PrivateTest_loss += loss.data[0]
_, predicted = torch.max(outputs_avg.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
utils.progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (PrivateTest_loss / (batch_idx + 1), 100. * correct / total, correct, total))
# Save checkpoint.
Test_acc = 100.*correct/total
if Test_acc > best_Test_acc:
print('Saving..')
print("best_Test_acc: %0.3f" % Test_acc)
state = {'net': net.state_dict() if use_cuda else net,
'best_Test_acc': Test_acc,
'best_Test_acc_epoch': epoch,
}
if not os.path.isdir(opt.dataset + '_' + opt.model):
os.mkdir(opt.dataset + '_' + opt.model)
if not os.path.isdir(path):
os.mkdir(path)
torch.save(state, os.path.join(path, 'Test_model.t7'))
best_Test_acc = Test_acc
best_Test_acc_epoch = epoch
for epoch in range(start_epoch, total_epoch):
train(epoch)
test(epoch)
print("best_Test_acc: %0.3f" % best_Test_acc)
print("best_Test_acc_epoch: %d" % best_Test_acc_epoch)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/ren_jie_liu/Facial-Expression-Recognition.Pytorch.git
git@gitee.com:ren_jie_liu/Facial-Expression-Recognition.Pytorch.git
ren_jie_liu
Facial-Expression-Recognition.Pytorch
Facial-Expression-Recognition.Pytorch
master

搜索帮助