代码拉取完成,页面将自动刷新
'''Train CK+ with PyTorch.'''
# 10 crop for data enhancement
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import transforms as transforms
import numpy as np
import os
import argparse
import utils
from CK import CK
from torch.autograd import Variable
from models import *
parser = argparse.ArgumentParser(description='PyTorch CK+ CNN Training')
parser.add_argument('--model', type=str, default='VGG19', help='CNN architecture')
parser.add_argument('--dataset', type=str, default='CK+', help='dataset')
parser.add_argument('--fold', default=1, type=int, help='k fold number')
parser.add_argument('--bs', default=128, type=int, help='batch_size')
parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
opt = parser.parse_args()
use_cuda = torch.cuda.is_available()
best_Test_acc = 0 # best PrivateTest accuracy
best_Test_acc_epoch = 0
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
learning_rate_decay_start = 20 # 50
learning_rate_decay_every = 1 # 5
learning_rate_decay_rate = 0.8 # 0.9
cut_size = 44
total_epoch = 60
path = os.path.join(opt.dataset + '_' + opt.model, str(opt.fold))
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(cut_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
transform_test = transforms.Compose([
transforms.TenCrop(cut_size),
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
])
trainset = CK(split = 'Training', fold = opt.fold, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=opt.bs, shuffle=True, num_workers=1)
testset = CK(split = 'Testing', fold = opt.fold, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=5, shuffle=False, num_workers=1)
# Model
if opt.model == 'VGG19':
net = VGG('VGG19')
elif opt.model == 'Resnet18':
net = ResNet18()
if opt.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir(path), 'Error: no checkpoint directory found!'
checkpoint = torch.load(os.path.join(path,'Test_model.t7'))
net.load_state_dict(checkpoint['net'])
best_Test_acc = checkpoint['best_Test_acc']
best_Test_acc_epoch = checkpoint['best_Test_acc_epoch']
start_epoch = best_Test_acc_epoch + 1
else:
print('==> Building model..')
if use_cuda:
net.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=opt.lr, momentum=0.9, weight_decay=5e-4)
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
global Train_acc
net.train()
train_loss = 0
correct = 0
total = 0
if epoch > learning_rate_decay_start and learning_rate_decay_start >= 0:
frac = (epoch - learning_rate_decay_start) // learning_rate_decay_every
decay_factor = learning_rate_decay_rate ** frac
current_lr = opt.lr * decay_factor
utils.set_lr(optimizer, current_lr) # set the decayed rate
else:
current_lr = opt.lr
print('learning_rate: %s' % str(current_lr))
for batch_idx, (inputs, targets) in enumerate(trainloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
optimizer.zero_grad()
inputs, targets = Variable(inputs), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
utils.clip_gradient(optimizer, 0.1)
optimizer.step()
train_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
utils.progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
Train_acc = 100.*correct/total
def test(epoch):
global Test_acc
global best_Test_acc
global best_Test_acc_epoch
net.eval()
PrivateTest_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(testloader):
bs, ncrops, c, h, w = np.shape(inputs)
inputs = inputs.view(-1, c, h, w)
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs, volatile=True), Variable(targets)
outputs = net(inputs)
outputs_avg = outputs.view(bs, ncrops, -1).mean(1) # avg over crops
loss = criterion(outputs_avg, targets)
PrivateTest_loss += loss.data[0]
_, predicted = torch.max(outputs_avg.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
utils.progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (PrivateTest_loss / (batch_idx + 1), 100. * correct / total, correct, total))
# Save checkpoint.
Test_acc = 100.*correct/total
if Test_acc > best_Test_acc:
print('Saving..')
print("best_Test_acc: %0.3f" % Test_acc)
state = {'net': net.state_dict() if use_cuda else net,
'best_Test_acc': Test_acc,
'best_Test_acc_epoch': epoch,
}
if not os.path.isdir(opt.dataset + '_' + opt.model):
os.mkdir(opt.dataset + '_' + opt.model)
if not os.path.isdir(path):
os.mkdir(path)
torch.save(state, os.path.join(path, 'Test_model.t7'))
best_Test_acc = Test_acc
best_Test_acc_epoch = epoch
for epoch in range(start_epoch, total_epoch):
train(epoch)
test(epoch)
print("best_Test_acc: %0.3f" % best_Test_acc)
print("best_Test_acc_epoch: %d" % best_Test_acc_epoch)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。