代码拉取完成,页面将自动刷新
import tiktoken
import re
from langchain.docstore.document import Document
import PyPDF2
import pylcs
import pandas as pd
import textwrap
import pickle
def num_tokens_from_string(string: str, encoding_name: str) -> int:
"""
Calculates the number of tokens in a given string using a specified encoding.
Args:
string: The input string to tokenize.
encoding_name: The name of the encoding to use (e.g., 'cl100k_base').
Returns:
The number of tokens in the string according to the specified encoding.
"""
encoding = tiktoken.encoding_for_model(encoding_name) # Get the encoding object
num_tokens = len(encoding.encode(string)) # Encode the string and count tokens
return num_tokens
def replace_t_with_space(list_of_documents):
"""
Replaces all tab characters ('\t') with spaces in the page content of each document.
Args:
list_of_documents: A list of document objects, each with a 'page_content' attribute.
Returns:
The modified list of documents with tab characters replaced by spaces.
"""
for doc in list_of_documents:
doc.page_content = doc.page_content.replace('\t', ' ') # Replace tabs with spaces
return list_of_documents
def replace_double_lines_with_one_line(text):
"""
Replaces consecutive double newline characters ('\n\n') with a single newline character ('\n').
Args:
text: The input text string.
Returns:
The text string with double newlines replaced by single newlines.
"""
cleaned_text = re.sub(r'\n\n', '\n', text) # Replace double newlines with single newlines
return cleaned_text
def split_into_chapters(book_path):
"""
Splits a PDF book into chapters based on chapter title patterns.
Args:
book_path (str): The path to the PDF book file.
Returns:
list: A list of Document objects, each representing a chapter with its text content and chapter number metadata.
"""
with open(book_path, 'rb') as pdf_file:
pdf_reader = PyPDF2.PdfReader(pdf_file)
documents = pdf_reader.pages # Get all pages from the PDF
# Concatenate text from all pages
text = " ".join([doc.extract_text() for doc in documents])
# Split text into chapters based on chapter title pattern (adjust as needed)
chapters = re.split(r'(CHAPTER\s[A-Z]+(?:\s[A-Z]+)*)', text)
# Create Document objects with chapter metadata
chapter_docs = []
chapter_num = 1
for i in range(1, len(chapters), 2):
chapter_text = chapters[i] + chapters[i + 1] # Combine chapter title and content
doc = Document(page_content=chapter_text, metadata={"chapter": chapter_num})
chapter_docs.append(doc)
chapter_num += 1
return chapter_docs
def extract_book_quotes_as_documents(documents, min_length=50):
quotes_as_documents = []
# Correct pattern for quotes longer than min_length characters, including line breaks
quote_pattern_longer_than_min_length = re.compile(rf'“(.{{{min_length},}}?)”', re.DOTALL)
for doc in documents:
content = doc.page_content
content = content.replace('\n', ' ')
found_quotes = quote_pattern_longer_than_min_length.findall(content)
for quote in found_quotes:
quote_doc = Document(page_content=quote)
quotes_as_documents.append(quote_doc)
return quotes_as_documents
def escape_quotes(text):
"""Escapes both single and double quotes in a string.
Args:
text: The string to escape.
Returns:
The string with single and double quotes escaped.
"""
return text.replace('"', '\\"').replace("'", "\\'")
def text_wrap(text, width=120):
"""
Wraps the input text to the specified width.
Args:
text (str): The input text to wrap.
width (int): The width at which to wrap the text.
Returns:
str: The wrapped text.
"""
return textwrap.fill(text, width=width)
def is_similarity_ratio_lower_than_th(large_string, short_string, th):
"""
Checks if the similarity ratio between two strings is lower than a given threshold.
Args:
large_string: The larger string to compare.
short_string: The shorter string to compare.
th: The similarity threshold.
Returns:
True if the similarity ratio is lower than the threshold, False otherwise.
"""
# Calculate the length of the longest common subsequence (LCS)
lcs = pylcs.lcs_sequence_length(large_string, short_string)
# Calculate the similarity ratio
similarity_ratio = lcs / len(short_string)
# Check if the similarity ratio is lower than the threshold
if similarity_ratio < th:
return True
else:
return False
def analyse_metric_results(results_df):
"""
Analyzes and prints the results of various metrics.
Args:
results_df: A pandas DataFrame containing the metric results.
"""
for metric_name, metric_value in results_df.items():
print(f"\n**{metric_name.upper()}**")
# Extract the numerical value from the Series object
if isinstance(metric_value, pd.Series):
metric_value = metric_value.values[0] # Assuming the value is at index 0
# Print explanation and score for each metric
if metric_name == "faithfulness":
print("Measures how well the generated answer is supported by the retrieved documents.")
print(f"Score: {metric_value:.4f}")
# Interpretation: Higher score indicates better faithfulness.
elif metric_name == "answer_relevancy":
print("Measures how relevant the generated answer is to the question.")
print(f"Score: {metric_value:.4f}")
# Interpretation: Higher score indicates better relevance.
elif metric_name == "context_precision":
print("Measures the proportion of retrieved documents that are actually relevant.")
print(f"Score: {metric_value:.4f}")
# Interpretation: Higher score indicates better precision (avoiding irrelevant documents).
elif metric_name == "context_relevancy":
print("Measures how relevant the retrieved documents are to the question.")
print(f"Score: {metric_value:.4f}")
# Interpretation: Higher score indicates better relevance of retrieved documents.
elif metric_name == "context_recall":
print("Measures the proportion of relevant documents that are successfully retrieved.")
print(f"Score: {metric_value:.4f}")
# Interpretation: Higher score indicates better recall (finding all relevant documents).
elif metric_name == "context_entity_recall":
print("Measures the proportion of relevant entities mentioned in the question that are also found in the retrieved documents.")
print(f"Score: {metric_value:.4f}")
# Interpretation: Higher score indicates better recall of relevant entities.
elif metric_name == "answer_similarity":
print("Measures the semantic similarity between the generated answer and the ground truth answer.")
print(f"Score: {metric_value:.4f}")
# Interpretation: Higher score indicates closer semantic meaning between the answers.
elif metric_name == "answer_correctness":
print("Measures whether the generated answer is factually correct.")
print(f"Score: {metric_value:.4f}")
# Interpretation: Higher score indicates better correctness.
import dill
def save_object(obj, filename):
"""
Save a Python object to a file using dill.
Args:
- obj: The Python object to save.
- filename: The name of the file where the object will be saved.
"""
with open(filename, 'wb') as file:
dill.dump(obj, file)
print(f"Object has been saved to '{filename}'.")
def load_object(filename):
"""
Load a Python object from a file using dill.
Args:
- filename: The name of the file from which the object will be loaded.
Returns:
- The loaded Python object.
"""
with open(filename, 'rb') as file:
obj = dill.load(file)
print(f"Object has been loaded from '{filename}'.")
return obj
# Example usage:
# save_object(plan_and_execute_app, 'plan_and_execute_app.pkl')
# plan_and_execute_app = load_object('plan_and_execute_app.pkl')
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。