1 Star 0 Fork 2

qiyz/Records

forked from Gitee 极速下载/Records 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
ISC

Records: SQL for Humans™

https://travis-ci.org/kennethreitz/records.svg?branch=master

Records is a very simple, but powerful, library for making raw SQL queries to most relational databases.

https://farm1.staticflickr.com/569/33085227621_7e8da49b90_k_d.jpg

Just write SQL. No bells, no whistles. This common task can be surprisingly difficult with the standard tools available. This library strives to make this workflow as simple as possible, while providing an elegant interface to work with your query results.

Database support includes RedShift, Postgres, MySQL, SQLite, Oracle, and MS-SQL (drivers not included).


☤ The Basics

We know how to write SQL, so let's send some to our database:

import records

db = records.Database('postgres://...')
rows = db.query('select * from active_users')    # or db.query_file('sqls/active-users.sql')

Grab one row at a time:

>>> rows[0]
<Record {"username": "model-t", "active": true, "name": "Henry Ford", "user_email": "model-t@gmail.com", "timezone": "2016-02-06 22:28:23.894202"}>

Or iterate over them:

for r in rows:
    print(r.name, r.user_email)

Values can be accessed many ways: row.user_email, row['user_email'], or row[3].

Fields with non-alphanumeric characters (like spaces) are also fully supported.

Or store a copy of your record collection for later reference:

>>> rows.all()
[<Record {"username": ...}>, <Record {"username": ...}>, <Record {"username": ...}>, ...]

If you're only expecting one result:

>>> rows.first()
<Record {"username": ...}>

Other options include rows.as_dict() and rows.as_dict(ordered=True).

☤ Features

  • Iterated rows are cached for future reference.
  • $DATABASE_URL environment variable support.
  • Convenience Database.get_table_names method.
  • Command-line records tool for exporting queries.
  • Safe parameterization: Database.query('life=:everything', everything=42).
  • Queries can be passed as strings or filenames, parameters supported.
  • Transactions: t = Database.transaction(); t.commit().
  • Bulk actions: Database.bulk_query() & Database.bulk_query_file().

Records is proudly powered by SQLAlchemy and Tablib.

☤ Data Export Functionality

Records also features full Tablib integration, and allows you to export your results to CSV, XLS, JSON, HTML Tables, YAML, or Pandas DataFrames with a single line of code. Excellent for sharing data with friends, or generating reports.

>>> print(rows.dataset)
username|active|name      |user_email       |timezone
--------|------|----------|-----------------|--------------------------
model-t |True  |Henry Ford|model-t@gmail.com|2016-02-06 22:28:23.894202
...

Comma Separated Values (CSV)

>>> print(rows.export('csv'))
username,active,name,user_email,timezone
model-t,True,Henry Ford,model-t@gmail.com,2016-02-06 22:28:23.894202
...

YAML Ain't Markup Language (YAML)

>>> print(rows.export('yaml'))
- {active: true, name: Henry Ford, timezone: '2016-02-06 22:28:23.894202', user_email: model-t@gmail.com, username: model-t}
...

JavaScript Object Notation (JSON)

>>> print(rows.export('json'))
[{"username": "model-t", "active": true, "name": "Henry Ford", "user_email": "model-t@gmail.com", "timezone": "2016-02-06 22:28:23.894202"}, ...]

Microsoft Excel (xls, xlsx)

with open('report.xls', 'wb') as f:
    f.write(rows.export('xls'))

Pandas DataFrame

>>> rows.export('df')
    username  active       name        user_email                   timezone
0    model-t    True Henry Ford model-t@gmail.com 2016-02-06 22:28:23.894202

You get the point. All other features of Tablib are also available, so you can sort results, add/remove columns/rows, remove duplicates, transpose the table, add separators, slice data by column, and more.

See the Tablib Documentation for more details.

☤ Installation

Of course, the recommended installation method is pipenv:

$ pipenv install records[pandas]
✨🍰✨

☤ Command-Line Tool

As an added bonus, a records command-line tool is automatically included. Here's a screenshot of the usage information:

Screenshot of Records Command-Line Interface.

☤ Thank You

Thanks for checking this library out! I hope you find it useful.

Of course, there's always room for improvement. Feel free to open an issue so we can make Records better, stronger, faster.

ISC License Copyright (c) 2016, Kenneth Reitz <me@kennethreitz.org> Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

简介

Records是一个非常简单但功能强大的库,用于对大多数关系数据库进行原始SQL查询 展开 收起
Python
ISC
取消

发行版

暂无发行版

贡献者

全部

近期动态

加载更多
不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/qiyz/Records.git
git@gitee.com:qiyz/Records.git
qiyz
Records
Records
master

搜索帮助