代码拉取完成,页面将自动刷新
import torch
d_model = 512
n_heads = 8
n_layers = 6
d_k = 64
d_v = 64
d_ff = 2048
dropout = 0.1
padding_idx = 0
bos_idx = 2
eos_idx = 3
src_vocab_size = 32000
tgt_vocab_size = 32000
batch_size = 32
epoch_num = 40
early_stop = 5
lr = 3e-4
# greed decode的最大句子长度
max_len = 60
# beam size for bleu
beam_size = 3
# Label Smoothing
use_smoothing = False
# NoamOpt
use_noamopt = True
data_dir = './data'
train_data_path = './data/json/train.json'
dev_data_path = './data/json/dev.json'
test_data_path = './data/json/test.json'
model_path = './experiment/model.pth'
log_path = './experiment/test.log'
output_path = './experiment/output.txt'
# gpu_id and device id is the relative id
# thus, if you wanna use os.environ['CUDA_VISIBLE_DEVICES'] = '2, 3'
# you should set CUDA_VISIBLE_DEVICES = 2 as main -> gpu_id = '0', device_id = [0, 1]
gpu_id = '0'
device_id = [0, 1]
# set device
if gpu_id != '':
device = torch.device(f"cuda:{gpu_id}")
else:
device = torch.device('cpu')
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。