代码拉取完成,页面将自动刷新
import torch
configurations = {
1: dict(
SEED = 1337, # random seed for reproduce results
DATA_ROOT = '/media/pc/6T/jasonjzhao/data/faces_emore', # the parent root where your train/val/test data are stored
MODEL_ROOT = '/media/pc/6T/jasonjzhao/buffer/model', # the root to buffer your checkpoints
LOG_ROOT = '/media/pc/6T/jasonjzhao/buffer/log', # the root to log your train/val status
BACKBONE_RESUME_ROOT = './', # the root to resume training from a saved checkpoint
HEAD_RESUME_ROOT = './', # the root to resume training from a saved checkpoint
BACKBONE_NAME = 'IR_SE_50', # support: ['ResNet_50', 'ResNet_101', 'ResNet_152', 'IR_50', 'IR_101', 'IR_152', 'IR_SE_50', 'IR_SE_101', 'IR_SE_152']
HEAD_NAME = 'ArcFace', # support: ['Softmax', 'ArcFace', 'CosFace', 'SphereFace', 'Am_softmax']
LOSS_NAME = 'Focal', # support: ['Focal', 'Softmax']
INPUT_SIZE = [112, 112], # support: [112, 112] and [224, 224]
RGB_MEAN = [0.5, 0.5, 0.5], # for normalize inputs to [-1, 1]
RGB_STD = [0.5, 0.5, 0.5],
EMBEDDING_SIZE = 512, # feature dimension
BATCH_SIZE = 512,
DROP_LAST = True, # whether drop the last batch to ensure consistent batch_norm statistics
LR = 0.1, # initial LR
NUM_EPOCH = 125, # total epoch number (use the firt 1/25 epochs to warm up)
WEIGHT_DECAY = 5e-4, # do not apply to batch_norm parameters
MOMENTUM = 0.9,
STAGES = [35, 65, 95], # epoch stages to decay learning rate
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu"),
MULTI_GPU = True, # flag to use multiple GPUs; if you choose to train with single GPU, you should first run "export CUDA_VISILE_DEVICES=device_id" to specify the GPU card you want to use
GPU_ID = [0, 1, 2, 3], # specify your GPU ids
PIN_MEMORY = True,
NUM_WORKERS = 0,
),
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。