1 Star 0 Fork 0

pauleta/OpenVINO-YoloV3

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
openvino_yolov3_MultiStick_test.py 14.17 KB
一键复制 编辑 原始数据 按行查看 历史
Takashi Kaneda 提交于 2020-01-07 23:23 . Fix shifted rectangle
import sys, os, cv2, time, heapq, argparse
import numpy as np, math
try:
from armv7l.openvino.inference_engine import IENetwork, IEPlugin
except:
from openvino.inference_engine import IENetwork, IEPlugin
import multiprocessing as mp
from time import sleep
import threading
yolo_scale_13 = 13
yolo_scale_26 = 26
yolo_scale_52 = 52
classes = 80
coords = 4
num = 3
anchors = [10,13,16,30,33,23,30,61,62,45,59,119,116,90,156,198,373,326]
LABELS = ("person", "bicycle", "car", "motorbike", "aeroplane",
"bus", "train", "truck", "boat", "traffic light",
"fire hydrant", "stop sign", "parking meter", "bench", "bird",
"cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "backpack",
"umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat",
"baseball glove", "skateboard", "surfboard","tennis racket", "bottle",
"wine glass", "cup", "fork", "knife", "spoon",
"bowl", "banana", "apple", "sandwich", "orange",
"broccoli", "carrot", "hot dog", "pizza", "donut",
"cake", "chair", "sofa", "pottedplant", "bed",
"diningtable", "toilet", "tvmonitor", "laptop", "mouse",
"remote", "keyboard", "cell phone", "microwave", "oven",
"toaster", "sink", "refrigerator", "book", "clock",
"vase", "scissors", "teddy bear", "hair drier", "toothbrush")
label_text_color = (255, 255, 255)
label_background_color = (125, 175, 75)
box_color = (255, 128, 0)
box_thickness = 1
processes = []
fps = ""
detectfps = ""
framecount = 0
detectframecount = 0
time1 = 0
time2 = 0
lastresults = None
def EntryIndex(side, lcoords, lclasses, location, entry):
n = int(location / (side * side))
loc = location % (side * side)
return int(n * side * side * (lcoords + lclasses + 1) + entry * side * side + loc)
class DetectionObject():
xmin = 0
ymin = 0
xmax = 0
ymax = 0
class_id = 0
confidence = 0.0
def __init__(self, x, y, h, w, class_id, confidence, h_scale, w_scale):
self.xmin = int((x - w / 2) * w_scale)
self.ymin = int((y - h / 2) * h_scale)
self.xmax = int(self.xmin + w * w_scale)
self.ymax = int(self.ymin + h * h_scale)
self.class_id = class_id
self.confidence = confidence
def IntersectionOverUnion(box_1, box_2):
width_of_overlap_area = min(box_1.xmax, box_2.xmax) - max(box_1.xmin, box_2.xmin)
height_of_overlap_area = min(box_1.ymax, box_2.ymax) - max(box_1.ymin, box_2.ymin)
area_of_overlap = 0.0
if (width_of_overlap_area < 0.0 or height_of_overlap_area < 0.0):
area_of_overlap = 0.0
else:
area_of_overlap = width_of_overlap_area * height_of_overlap_area
box_1_area = (box_1.ymax - box_1.ymin) * (box_1.xmax - box_1.xmin)
box_2_area = (box_2.ymax - box_2.ymin) * (box_2.xmax - box_2.xmin)
area_of_union = box_1_area + box_2_area - area_of_overlap
retval = 0.0
if area_of_union <= 0.0:
retval = 0.0
else:
retval = (area_of_overlap / area_of_union)
return retval
def ParseYOLOV3Output(blob, resized_im_h, resized_im_w, original_im_h, original_im_w, threshold, objects):
out_blob_h = blob.shape[2]
out_blob_w = blob.shape[3]
side = out_blob_h
anchor_offset = 0
if side == yolo_scale_13:
anchor_offset = 2 * 6
elif side == yolo_scale_26:
anchor_offset = 2 * 3
elif side == yolo_scale_52:
anchor_offset = 2 * 0
side_square = side * side
output_blob = blob.flatten()
for i in range(side_square):
row = int(i / side)
col = int(i % side)
for n in range(num):
obj_index = EntryIndex(side, coords, classes, n * side * side + i, coords)
box_index = EntryIndex(side, coords, classes, n * side * side + i, 0)
scale = output_blob[obj_index]
if (scale < threshold):
continue
x = (col + output_blob[box_index + 0 * side_square]) / side * resized_im_w
y = (row + output_blob[box_index + 1 * side_square]) / side * resized_im_h
height = math.exp(output_blob[box_index + 3 * side_square]) * anchors[anchor_offset + 2 * n + 1]
width = math.exp(output_blob[box_index + 2 * side_square]) * anchors[anchor_offset + 2 * n]
for j in range(classes):
class_index = EntryIndex(side, coords, classes, n * side_square + i, coords + 1 + j)
prob = scale * output_blob[class_index]
if prob < threshold:
continue
obj = DetectionObject(x, y, height, width, j, prob, (original_im_h / resized_im_h), (original_im_w / resized_im_w))
objects.append(obj)
return objects
def camThread(LABELS, results, frameBuffer, camera_width, camera_height, vidfps):
global fps
global detectfps
global lastresults
global framecount
global detectframecount
global time1
global time2
global cam
global window_name
#cam = cv2.VideoCapture(0)
#if cam.isOpened() != True:
# print("USB Camera Open Error!!!")
# sys.exit(0)
#cam.set(cv2.CAP_PROP_FPS, vidfps)
#cam.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width)
#cam.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height)
#window_name = "USB Camera"
#wait_key_time = 1
cam = cv2.VideoCapture("data/input/testvideo4.mp4")
camera_width = int(cam.get(cv2.CAP_PROP_FRAME_WIDTH))
camera_height = int(cam.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_count = int(cam.get(cv2.CAP_PROP_FRAME_COUNT))
window_name = "Movie File"
wait_key_time = int(1000 / vidfps)
cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)
while True:
t1 = time.perf_counter()
# USB Camera Stream Read
s, color_image = cam.read()
if not s:
continue
if frameBuffer.full():
frameBuffer.get()
height = color_image.shape[0]
width = color_image.shape[1]
frameBuffer.put(color_image.copy())
if not results.empty():
objects = results.get(False)
detectframecount += 1
for obj in objects:
if obj.confidence < 0.2:
continue
label = obj.class_id
confidence = obj.confidence
if confidence > 0.2:
label_text = LABELS[label] + " (" + "{:.1f}".format(confidence * 100) + "%)"
cv2.rectangle(color_image, (obj.xmin, obj.ymin), (obj.xmax, obj.ymax), box_color, box_thickness)
cv2.putText(color_image, label_text, (obj.xmin, obj.ymin - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, label_text_color, 1)
lastresults = objects
else:
if not isinstance(lastresults, type(None)):
for obj in lastresults:
if obj.confidence < 0.2:
continue
label = obj.class_id
confidence = obj.confidence
if confidence > 0.2:
label_text = LABELS[label] + " (" + "{:.1f}".format(confidence * 100) + "%)"
cv2.rectangle(color_image, (obj.xmin, obj.ymin), (obj.xmax, obj.ymax), box_color, box_thickness)
cv2.putText(color_image, label_text, (obj.xmin, obj.ymin - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, label_text_color, 1)
cv2.putText(color_image, fps, (width-170,15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
cv2.putText(color_image, detectfps, (width-170,30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
cv2.imshow(window_name, cv2.resize(color_image, (width, height)))
if cv2.waitKey(wait_key_time)&0xFF == ord('q'):
sys.exit(0)
## Print FPS
framecount += 1
if framecount >= 15:
fps = "(Playback) {:.1f} FPS".format(time1/15)
detectfps = "(Detection) {:.1f} FPS".format(detectframecount/time2)
framecount = 0
detectframecount = 0
time1 = 0
time2 = 0
t2 = time.perf_counter()
elapsedTime = t2-t1
time1 += 1/elapsedTime
time2 += elapsedTime
# l = Search list
# x = Search target value
def searchlist(l, x, notfoundvalue=-1):
if x in l:
return l.index(x)
else:
return notfoundvalue
def async_infer(ncsworker):
ncsworker.skip_frame_measurement()
while True:
ncsworker.predict_async()
class NcsWorker(object):
def __init__(self, devid, frameBuffer, results, camera_width, camera_height, number_of_ncs, vidfps):
self.devid = devid
self.frameBuffer = frameBuffer
self.model_xml = "./lrmodels/YoloV3/FP16/frozen_yolo_v3.xml"
self.model_bin = "./lrmodels/YoloV3/FP16/frozen_yolo_v3.bin"
self.camera_width = camera_width
self.camera_height = camera_height
self.m_input_size = 416
self.threshould = 0.7
self.num_requests = 4
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
self.plugin = IEPlugin(device="MYRIAD")
self.net = IENetwork(model=self.model_xml, weights=self.model_bin)
self.input_blob = next(iter(self.net.inputs))
self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests)
self.results = results
self.number_of_ncs = number_of_ncs
self.predict_async_time = 800
self.skip_frame = 0
self.roop_frame = 0
self.vidfps = vidfps
self.new_w = int(camera_width * self.m_input_size/camera_width)
self.new_h = int(camera_height * self.m_input_size/camera_height)
def image_preprocessing(self, color_image):
resized_image = cv2.resize(color_image, (self.new_w, self.new_h), interpolation = cv2.INTER_CUBIC)
canvas = np.full((self.m_input_size, self.m_input_size, 3), 128)
canvas[(self.m_input_size-self.new_h)//2:(self.m_input_size-self.new_h)//2 + self.new_h,(self.m_input_size-self.new_w)//2:(self.m_input_size-self.new_w)//2 + self.new_w, :] = resized_image
prepimg = canvas
prepimg = prepimg[np.newaxis, :, :, :] # Batch size axis add
prepimg = prepimg.transpose((0, 3, 1, 2)) # NHWC to NCHW
return prepimg
def skip_frame_measurement(self):
surplustime_per_second = (1000 - self.predict_async_time)
if surplustime_per_second > 0.0:
frame_per_millisecond = (1000 / self.vidfps)
total_skip_frame = surplustime_per_second / frame_per_millisecond
self.skip_frame = int(total_skip_frame / self.num_requests)
else:
self.skip_frame = 0
def predict_async(self):
try:
if self.frameBuffer.empty():
return
self.roop_frame += 1
if self.roop_frame <= self.skip_frame:
self.frameBuffer.get()
return
self.roop_frame = 0
prepimg = self.image_preprocessing(self.frameBuffer.get())
reqnum = searchlist(self.inferred_request, 0)
if reqnum > -1:
self.exec_net.start_async(request_id=reqnum, inputs={self.input_blob: prepimg})
self.inferred_request[reqnum] = 1
self.inferred_cnt += 1
if self.inferred_cnt == sys.maxsize:
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
heapq.heappush(self.heap_request, (self.inferred_cnt, reqnum))
cnt, dev = heapq.heappop(self.heap_request)
if self.exec_net.requests[dev].wait(0) == 0:
self.exec_net.requests[dev].wait(-1)
objects = []
outputs = self.exec_net.requests[dev].outputs
for output in outputs.values():
objects = ParseYOLOV3Output(output, self.new_h, self.new_w, self.camera_height, self.camera_width, self.threshould, objects)
objlen = len(objects)
for i in range(objlen):
if (objects[i].confidence == 0.0):
continue
for j in range(i + 1, objlen):
if (IntersectionOverUnion(objects[i], objects[j]) >= 0.4):
objects[j].confidence = 0
self.results.put(objects)
self.inferred_request[dev] = 0
else:
heapq.heappush(self.heap_request, (cnt, dev))
except:
import traceback
traceback.print_exc()
def inferencer(results, frameBuffer, number_of_ncs, camera_width, camera_height, vidfps):
# Init infer threads
threads = []
for devid in range(number_of_ncs):
thworker = threading.Thread(target=async_infer, args=(NcsWorker(devid, frameBuffer, results, camera_width, camera_height, number_of_ncs, vidfps),))
thworker.start()
threads.append(thworker)
for th in threads:
th.join()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-numncs','--numberofncs',dest='number_of_ncs',type=int,default=1,help='Number of NCS. (Default=1)')
args = parser.parse_args()
number_of_ncs = args.number_of_ncs
camera_width = 320
camera_height = 240
vidfps = 30
try:
mp.set_start_method('forkserver')
frameBuffer = mp.Queue(10)
results = mp.Queue()
# Start detection MultiStick
# Activation of inferencer
p = mp.Process(target=inferencer, args=(results, frameBuffer, number_of_ncs, camera_width, camera_height, vidfps), daemon=True)
p.start()
processes.append(p)
sleep(number_of_ncs * 7)
# Start streaming
p = mp.Process(target=camThread, args=(LABELS, results, frameBuffer, camera_width, camera_height, vidfps), daemon=True)
p.start()
processes.append(p)
while True:
sleep(1)
except:
import traceback
traceback.print_exc()
finally:
for p in range(len(processes)):
processes[p].terminate()
print("\n\nFinished\n\n")
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/pauleta/OpenVINO-YoloV3.git
git@gitee.com:pauleta/OpenVINO-YoloV3.git
pauleta
OpenVINO-YoloV3
OpenVINO-YoloV3
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385