代码拉取完成,页面将自动刷新
import functools
import json
import os
import platform
import re
import shutil
import subprocess
import sys
import urllib.request
from enum import Enum
from typing import Callable, List, Optional, Tuple
from urllib.parse import quote, urlparse
import setuptools
from setuptools import find_packages
with open("README.md", mode="r", encoding="utf-8") as fh:
long_description = fh.read()
IS_DEV_MODE = os.getenv("IS_DEV_MODE", "true").lower() == "true"
# If you modify the version, please modify the version in the following files:
# dbgpt/_version.py
DB_GPT_VERSION = os.getenv("DB_GPT_VERSION", "0.6.2")
BUILD_NO_CACHE = os.getenv("BUILD_NO_CACHE", "true").lower() == "true"
LLAMA_CPP_GPU_ACCELERATION = (
os.getenv("LLAMA_CPP_GPU_ACCELERATION", "true").lower() == "true"
)
BUILD_FROM_SOURCE = os.getenv("BUILD_FROM_SOURCE", "false").lower() == "true"
BUILD_FROM_SOURCE_URL_FAST_CHAT = os.getenv(
"BUILD_FROM_SOURCE_URL_FAST_CHAT", "git+https://github.com/lm-sys/FastChat.git"
)
BUILD_VERSION_OPENAI = os.getenv("BUILD_VERSION_OPENAI")
INCLUDE_QUANTIZATION = os.getenv("INCLUDE_QUANTIZATION", "true").lower() == "true"
INCLUDE_OBSERVABILITY = os.getenv("INCLUDE_OBSERVABILITY", "true").lower() == "true"
def parse_requirements(file_name: str) -> List[str]:
with open(file_name) as f:
return [
require.strip()
for require in f
if require.strip() and not require.startswith("#")
]
def find_python():
python_path = sys.executable
print(python_path)
if not python_path:
print("Python command not found.")
return None
return python_path
def get_latest_version(package_name: str, index_url: str, default_version: str):
python_command = find_python()
if not python_command:
print("Python command not found.")
return default_version
command_index_versions = [
python_command,
"-m",
"pip",
"index",
"versions",
package_name,
"--index-url",
index_url,
]
result_index_versions = subprocess.run(
command_index_versions, stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
if result_index_versions.returncode == 0:
output = result_index_versions.stdout.decode()
lines = output.split("\n")
for line in lines:
if "Available versions:" in line:
available_versions = line.split(":")[1].strip()
latest_version = available_versions.split(",")[0].strip()
# Query for compatibility with the latest version of torch
if package_name == "torch" or "torchvision":
latest_version = latest_version.split("+")[0]
return latest_version
else:
command_simulate_install = [
python_command,
"-m",
"pip",
"install",
f"{package_name}==",
]
result_simulate_install = subprocess.run(
command_simulate_install, stderr=subprocess.PIPE
)
print(result_simulate_install)
stderr_output = result_simulate_install.stderr.decode()
print(stderr_output)
match = re.search(r"from versions: (.+?)\)", stderr_output)
if match:
available_versions = match.group(1).split(", ")
latest_version = available_versions[-1].strip()
return latest_version
return default_version
def encode_url(package_url: str) -> str:
parsed_url = urlparse(package_url)
encoded_path = quote(parsed_url.path)
safe_url = parsed_url._replace(path=encoded_path).geturl()
return safe_url, parsed_url.path
def cache_package(package_url: str, package_name: str, is_windows: bool = False):
safe_url, parsed_url = encode_url(package_url)
if BUILD_NO_CACHE:
return safe_url
from pip._internal.utils.appdirs import user_cache_dir
filename = os.path.basename(parsed_url)
cache_dir = os.path.join(user_cache_dir("pip"), "http", "wheels", package_name)
os.makedirs(cache_dir, exist_ok=True)
local_path = os.path.join(cache_dir, filename)
if not os.path.exists(local_path):
temp_path = local_path + ".tmp"
if os.path.exists(temp_path):
os.remove(temp_path)
try:
print(f"Download {safe_url} to {local_path}")
urllib.request.urlretrieve(safe_url, temp_path)
shutil.move(temp_path, local_path)
finally:
if os.path.exists(temp_path):
os.remove(temp_path)
return f"file:///{local_path}" if is_windows else f"file://{local_path}"
class SetupSpec:
def __init__(self) -> None:
self.extras: dict = {}
self.install_requires: List[str] = []
@property
def unique_extras(self) -> dict[str, list[str]]:
unique_extras = {}
for k, v in self.extras.items():
unique_extras[k] = list(set(v))
return unique_extras
setup_spec = SetupSpec()
class AVXType(Enum):
BASIC = "basic"
AVX = "AVX"
AVX2 = "AVX2"
AVX512 = "AVX512"
@staticmethod
def of_type(avx: str):
for item in AVXType:
if item._value_ == avx:
return item
return None
class OSType(Enum):
WINDOWS = "win"
LINUX = "linux"
DARWIN = "darwin"
OTHER = "other"
@functools.cache
def get_cpu_avx_support() -> Tuple[OSType, AVXType]:
system = platform.system()
os_type = OSType.OTHER
cpu_avx = AVXType.BASIC
env_cpu_avx = AVXType.of_type(os.getenv("DBGPT_LLAMA_CPP_AVX"))
if "windows" in system.lower():
os_type = OSType.WINDOWS
output = "avx2"
print("Current platform is windows, use avx2 as default cpu architecture")
elif system == "Linux":
os_type = OSType.LINUX
if os.path.exists("/etc/alpine-release"):
# For Alpine, we'll check /proc/cpuinfo directly
with open("/proc/cpuinfo", "r") as f:
output = f.read()
else:
result = subprocess.run(
["lscpu"], stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
output = result.stdout.decode()
elif system == "Darwin":
os_type = OSType.DARWIN
result = subprocess.run(
["sysctl", "-a"], stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
output = result.stdout.decode()
else:
os_type = OSType.OTHER
print("Unsupported OS to get cpu avx, use default")
return os_type, env_cpu_avx if env_cpu_avx else cpu_avx
if "avx512" in output.lower():
cpu_avx = AVXType.AVX512
elif "avx2" in output.lower():
cpu_avx = AVXType.AVX2
elif "avx " in output.lower():
# cpu_avx = AVXType.AVX
pass
return os_type, env_cpu_avx if env_cpu_avx else cpu_avx
def get_cuda_version_from_torch():
try:
import torch
return torch.version.cuda
except:
return None
def get_cuda_version_from_nvcc():
try:
output = subprocess.check_output(["nvcc", "--version"])
version_line = [
line for line in output.decode("utf-8").split("\n") if "release" in line
][0]
return version_line.split("release")[-1].strip().split(",")[0]
except:
return None
def get_cuda_version_from_nvidia_smi():
try:
output = subprocess.check_output(["nvidia-smi"]).decode("utf-8")
match = re.search(r"CUDA Version:\s+(\d+\.\d+)", output)
if match:
return match.group(1)
else:
return None
except:
return None
def get_cuda_version() -> str:
try:
cuda_version = get_cuda_version_from_torch()
if not cuda_version:
cuda_version = get_cuda_version_from_nvcc()
if not cuda_version:
cuda_version = get_cuda_version_from_nvidia_smi()
return cuda_version
except Exception:
return None
def _build_wheels(
pkg_name: str,
pkg_version: str,
base_url: str = None,
base_url_func: Callable[[str, str, str], str] = None,
pkg_file_func: Callable[[str, str, str, str, OSType], str] = None,
supported_cuda_versions: List[str] = ["11.8", "12.1"],
) -> Optional[str]:
"""
Build the URL for the package wheel file based on the package name, version, and CUDA version.
Args:
pkg_name (str): The name of the package.
pkg_version (str): The version of the package.
base_url (str): The base URL for downloading the package.
base_url_func (Callable): A function to generate the base URL.
pkg_file_func (Callable): build package file function.
function params: pkg_name, pkg_version, cuda_version, py_version, OSType
supported_cuda_versions (List[str]): The list of supported CUDA versions.
Returns:
Optional[str]: The URL for the package wheel file.
"""
os_type, _ = get_cpu_avx_support()
cuda_version = get_cuda_version()
py_version = platform.python_version()
py_version = "cp" + "".join(py_version.split(".")[0:2])
if os_type == OSType.DARWIN or not cuda_version:
return None
if cuda_version in supported_cuda_versions:
cuda_version = cuda_version
else:
print(
f"Warning: Your CUDA version {cuda_version} is not in our set supported_cuda_versions , we will use our set version."
)
if cuda_version < "12.1":
cuda_version = supported_cuda_versions[0]
else:
cuda_version = supported_cuda_versions[-1]
cuda_version = "cu" + cuda_version.replace(".", "")
os_pkg_name = "linux_x86_64" if os_type == OSType.LINUX else "win_amd64"
if base_url_func:
base_url = base_url_func(pkg_version, cuda_version, py_version)
if base_url and base_url.endswith("/"):
base_url = base_url[:-1]
if pkg_file_func:
full_pkg_file = pkg_file_func(
pkg_name, pkg_version, cuda_version, py_version, os_type
)
else:
full_pkg_file = f"{pkg_name}-{pkg_version}+{cuda_version}-{py_version}-{py_version}-{os_pkg_name}.whl"
if not base_url:
return full_pkg_file
else:
return f"{base_url}/{full_pkg_file}"
def torch_requires(
torch_version: str = "2.2.1",
torchvision_version: str = "0.17.1",
torchaudio_version: str = "2.2.1",
):
os_type, _ = get_cpu_avx_support()
torch_pkgs = [
f"torch=={torch_version}",
f"torchvision=={torchvision_version}",
f"torchaudio=={torchaudio_version}",
]
# Initialize torch_cuda_pkgs for non-Darwin OSes;
# it will be the same as torch_pkgs for Darwin or when no specific CUDA handling is needed
torch_cuda_pkgs = torch_pkgs[:]
if os_type != OSType.DARWIN:
supported_versions = ["11.8", "12.1"]
base_url_func = lambda v, x, y: f"https://download.pytorch.org/whl/{x}"
torch_url = _build_wheels(
"torch",
torch_version,
base_url_func=base_url_func,
supported_cuda_versions=supported_versions,
)
torchvision_url = _build_wheels(
"torchvision",
torchvision_version,
base_url_func=base_url_func,
supported_cuda_versions=supported_versions,
)
# Cache and add CUDA-dependent packages if URLs are available
if torch_url:
torch_url_cached = cache_package(
torch_url, "torch", os_type == OSType.WINDOWS
)
torch_cuda_pkgs[0] = f"torch @ {torch_url_cached}"
if torchvision_url:
torchvision_url_cached = cache_package(
torchvision_url, "torchvision", os_type == OSType.WINDOWS
)
torch_cuda_pkgs[1] = f"torchvision @ {torchvision_url_cached}"
# Assuming 'setup_spec' is a dictionary where we're adding these dependencies
setup_spec.extras["torch"] = torch_pkgs
setup_spec.extras["torch_cpu"] = torch_pkgs
setup_spec.extras["torch_cuda"] = torch_cuda_pkgs
def llama_cpp_python_cuda_requires():
cuda_version = get_cuda_version()
supported_cuda_versions = ["11.8", "12.1"]
device = "cpu"
if not cuda_version:
print("CUDA not support, use cpu version")
return
if not LLAMA_CPP_GPU_ACCELERATION:
print("Disable GPU acceleration")
return
# Supports GPU acceleration
if cuda_version <= "11.8" and not None:
device = "cu" + supported_cuda_versions[0].replace(".", "")
else:
device = "cu" + supported_cuda_versions[-1].replace(".", "")
os_type, cpu_avx = get_cpu_avx_support()
print(f"OS: {os_type}, cpu avx: {cpu_avx}")
supported_os = [OSType.WINDOWS, OSType.LINUX]
if os_type not in supported_os:
print(
f"llama_cpp_python_cuda just support in os: {[r._value_ for r in supported_os]}"
)
return
cpu_device = ""
if cpu_avx == AVXType.AVX2 or cpu_avx == AVXType.AVX512:
cpu_device = "avx"
else:
cpu_device = "basic"
device += cpu_device
base_url = "https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui"
llama_cpp_version = "0.2.26"
py_version = "cp310"
os_pkg_name = "manylinux_2_31_x86_64" if os_type == OSType.LINUX else "win_amd64"
extra_index_url = f"{base_url}/llama_cpp_python_cuda-{llama_cpp_version}+{device}-{py_version}-{py_version}-{os_pkg_name}.whl"
extra_index_url, _ = encode_url(extra_index_url)
print(f"Install llama_cpp_python_cuda from {extra_index_url}")
setup_spec.extras["llama_cpp"].append(f"llama_cpp_python_cuda @ {extra_index_url}")
def core_requires():
"""
pip install dbgpt or pip install "dbgpt[core]"
"""
setup_spec.extras["core"] = [
"aiohttp==3.8.4",
"chardet==5.1.0",
"importlib-resources==5.12.0",
"python-dotenv==1.0.0",
"cachetools",
"pydantic>=2.6.0",
# For AWEL type checking
"typeguard",
# Snowflake no additional dependencies.
"snowflake-id",
"typing_inspect",
]
# For DB-GPT python client SDK
setup_spec.extras["client"] = setup_spec.extras["core"] + [
"httpx",
"fastapi>=0.100.0",
# For retry, chromadb need tenacity<=8.3.0
"tenacity<=8.3.0",
]
# Simple command line dependencies
setup_spec.extras["cli"] = setup_spec.extras["client"] + [
"prettytable",
"click",
"psutil==5.9.4",
"colorama==0.4.6",
"tomlkit",
"rich",
]
# Agent dependencies
setup_spec.extras["agent"] = setup_spec.extras["cli"] + [
"termcolor",
# https://github.com/eosphoros-ai/DB-GPT/issues/551
# TODO: remove pandas dependency
# alpine can't install pandas by default
"pandas==2.0.3",
# numpy should less than 2.0.0
"numpy>=1.21.0,<2.0.0",
]
# Just use by DB-GPT internal, we should find the smallest dependency set for run
# we core unit test.
# The dependency "framework" is too large for now.
setup_spec.extras["simple_framework"] = setup_spec.extras["agent"] + [
"jinja2",
"uvicorn",
"shortuuid",
# 2.0.29 not support duckdb now
"SQLAlchemy>=2.0.25, <2.0.29",
# for cache
"msgpack",
# for AWEL operator serialization
"cloudpickle",
# for cache
# TODO: pympler has not been updated for a long time and needs to
# find a new toolkit.
"pympler",
"duckdb",
"duckdb-engine==0.9.1",
# lightweight python library for scheduling jobs
"schedule",
# For datasource subpackage
"sqlparse==0.4.4",
]
# TODO: remove fschat from simple_framework
if BUILD_FROM_SOURCE:
setup_spec.extras["simple_framework"].append(
f"fschat @ {BUILD_FROM_SOURCE_URL_FAST_CHAT}"
)
else:
setup_spec.extras["simple_framework"].append("fschat")
setup_spec.extras["framework"] = setup_spec.extras["simple_framework"] + [
"coloredlogs",
"seaborn",
"auto-gpt-plugin-template",
"gTTS==2.3.1",
"pymysql",
"jsonschema",
# TODO move transformers to default
# "transformers>=4.31.0",
"transformers>=4.34.0",
"alembic==1.12.0",
# for excel
"openpyxl==3.1.2",
"chardet==5.1.0",
"xlrd==2.0.1",
"aiofiles",
# for agent
"GitPython",
# For AWEL dag visualization, graphviz is a small package, also we can move it to default.
"graphviz",
# For security
"cryptography",
# For high performance RPC communication in code execution
"pyzmq",
]
def code_execution_requires():
"""
pip install "dbgpt[code]"
Code execution dependencies.
"""
setup_spec.extras["code"] = setup_spec.extras["core"] + [
"msgpack",
# for AWEL operator serialization
"cloudpickle",
"lyric-py>=0.1.4",
"lyric-py-worker>=0.1.4",
"lyric-js-worker>=0.1.4",
]
def knowledge_requires():
"""
pip install "dbgpt[rag]"
"""
setup_spec.extras["rag"] = setup_spec.extras["vstore"] + [
"spacy==3.7",
"markdown",
"bs4",
"python-pptx",
"python-docx",
"pypdf",
"pdfplumber",
"python-multipart",
"sentence-transformers",
]
setup_spec.extras["graph_rag"] = setup_spec.extras["rag"] + [
"neo4j",
"dbgpt-tugraph-plugins>=0.1.0rc1",
]
def llama_cpp_requires():
"""
pip install "dbgpt[llama_cpp]"
"""
setup_spec.extras["llama_cpp"] = ["llama-cpp-python"]
llama_cpp_python_cuda_requires()
def _build_autoawq_requires() -> Optional[str]:
os_type, _ = get_cpu_avx_support()
if os_type == OSType.DARWIN:
return None
return "auto-gptq"
def quantization_requires():
os_type, _ = get_cpu_avx_support()
quantization_pkgs = []
if os_type == OSType.WINDOWS:
# For Windows, fetch a specific bitsandbytes WHL package
latest_version = get_latest_version(
"bitsandbytes",
"https://jllllll.github.io/bitsandbytes-windows-webui",
"0.41.1",
)
whl_url = f"https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-{latest_version}-py3-none-win_amd64.whl"
local_pkg_path = cache_package(whl_url, "bitsandbytes", True)
setup_spec.extras["bitsandbytes"] = [f"bitsandbytes @ {local_pkg_path}"]
else:
setup_spec.extras["bitsandbytes"] = ["bitsandbytes"]
if os_type != OSType.DARWIN:
# Since transformers 4.35.0, the GPT-Q/AWQ model can be loaded using AutoModelForCausalLM.
# autoawq requirements:
# 1. Compute Capability 7.5 (sm75). Turing and later architectures are supported.
# 2. CUDA Toolkit 11.8 and later.
cuda_version = get_cuda_version()
# autoawq_latest_version = get_latest_version("autoawq", "", "0.2.4")
if cuda_version is None or cuda_version == "12.1":
quantization_pkgs.extend(["autoawq", _build_autoawq_requires(), "optimum"])
else:
# TODO(yyhhyy): Add autoawq install method for CUDA version 11.8
quantization_pkgs.extend(["autoawq", _build_autoawq_requires(), "optimum"])
setup_spec.extras["quantization"] = (
["cpm_kernels"] + quantization_pkgs + setup_spec.extras["bitsandbytes"]
)
def all_vector_store_requires():
"""
pip install "dbgpt[vstore]"
"""
setup_spec.extras["vstore"] = [
"chromadb>=0.4.22",
]
setup_spec.extras["vstore_weaviate"] = setup_spec.extras["vstore"] + [
# "protobuf",
# "grpcio",
# weaviate depends on grpc which version is very low, we should install it
# manually.
"weaviate-client",
]
setup_spec.extras["vstore_milvus"] = setup_spec.extras["vstore"] + [
"pymilvus",
]
setup_spec.extras["vstore_all"] = (
setup_spec.extras["vstore"]
+ setup_spec.extras["vstore_weaviate"]
+ setup_spec.extras["vstore_milvus"]
)
def all_datasource_requires():
"""
pip install "dbgpt[datasource]"
"""
setup_spec.extras["datasource"] = [
# "sqlparse==0.4.4",
"pymysql",
]
# If you want to install psycopg2 and mysqlclient in ubuntu, you should install
# libpq-dev and libmysqlclient-dev first.
setup_spec.extras["datasource_all"] = setup_spec.extras["datasource"] + [
"pyspark",
"pymssql",
# install psycopg2-binary when you are in a virtual environment
# pip install psycopg2-binary
"psycopg2",
# mysqlclient 2.2.x have pkg-config issue on 3.10+
"mysqlclient==2.1.0",
# pydoris is too old, we should find a new package to replace it.
"pydoris>=1.0.2,<2.0.0",
"clickhouse-connect",
"pyhive",
"thrift",
"thrift_sasl",
"vertica_python",
]
def openai_requires():
"""
pip install "dbgpt[openai]"
"""
setup_spec.extras["openai"] = ["tiktoken"]
if BUILD_VERSION_OPENAI:
# Read openai sdk version from env
setup_spec.extras["openai"].append(f"openai=={BUILD_VERSION_OPENAI}")
else:
setup_spec.extras["openai"].append("openai")
if INCLUDE_OBSERVABILITY:
setup_spec.extras["openai"] += setup_spec.extras["observability"]
setup_spec.extras["openai"] += setup_spec.extras["framework"]
setup_spec.extras["openai"] += setup_spec.extras["rag"]
def proxy_requires():
"""
pip install "dbgpt[proxy]"
"""
setup_spec.extras["proxy"] = setup_spec.extras["openai"] + ["anthropic"]
def gpt4all_requires():
"""
pip install "dbgpt[gpt4all]"
"""
setup_spec.extras["gpt4all"] = ["gpt4all"]
def vllm_requires():
"""
pip install "dbgpt[vllm]"
"""
setup_spec.extras["vllm"] = ["vllm"]
def cache_requires():
"""
pip install "dbgpt[cache]"
"""
setup_spec.extras["cache"] = ["rocksdict"]
def observability_requires():
"""
pip install "dbgpt[observability]"
Send DB-GPT traces to OpenTelemetry compatible backends.
"""
setup_spec.extras["observability"] = [
"opentelemetry-api",
"opentelemetry-sdk",
"opentelemetry-exporter-otlp",
]
def default_requires():
"""
pip install "dbgpt[default]"
"""
setup_spec.extras["default"] = [
# "tokenizers==0.13.3",
"tokenizers>=0.14",
"accelerate>=0.20.3",
"zhipuai",
"dashscope",
"chardet",
"sentencepiece",
"ollama",
"qianfan",
"libro>=0.1.25",
"poetry",
]
setup_spec.extras["default"] += setup_spec.extras["framework"]
setup_spec.extras["default"] += setup_spec.extras["rag"]
setup_spec.extras["default"] += setup_spec.extras["graph_rag"]
setup_spec.extras["default"] += setup_spec.extras["datasource"]
setup_spec.extras["default"] += setup_spec.extras["torch"]
setup_spec.extras["default"] += setup_spec.extras["cache"]
setup_spec.extras["default"] += setup_spec.extras["proxy"]
setup_spec.extras["default"] += setup_spec.extras["code"]
if INCLUDE_QUANTIZATION:
# Add quantization extra to default, default is True
setup_spec.extras["default"] += setup_spec.extras["quantization"]
if INCLUDE_OBSERVABILITY:
setup_spec.extras["default"] += setup_spec.extras["observability"]
def all_requires():
requires = set()
for _, pkgs in setup_spec.extras.items():
for pkg in pkgs:
requires.add(pkg)
setup_spec.extras["all"] = list(requires)
def init_install_requires():
setup_spec.install_requires += setup_spec.extras["core"]
print(f"Install requires: \n{','.join(setup_spec.install_requires)}")
core_requires()
code_execution_requires()
torch_requires()
llama_cpp_requires()
quantization_requires()
all_vector_store_requires()
all_datasource_requires()
knowledge_requires()
gpt4all_requires()
vllm_requires()
cache_requires()
observability_requires()
openai_requires()
proxy_requires()
# must be last
default_requires()
all_requires()
init_install_requires()
# Packages to exclude when IS_DEV_MODE is False
excluded_packages = ["tests", "*.tests", "*.tests.*", "examples"]
if IS_DEV_MODE:
packages = find_packages(exclude=excluded_packages)
else:
packages = find_packages(
exclude=excluded_packages,
include=[
"dbgpt",
"dbgpt._private",
"dbgpt._private.*",
"dbgpt.agent",
"dbgpt.agent.*",
"dbgpt.cli",
"dbgpt.cli.*",
"dbgpt.client",
"dbgpt.client.*",
"dbgpt.configs",
"dbgpt.configs.*",
"dbgpt.core",
"dbgpt.core.*",
"dbgpt.datasource",
"dbgpt.datasource.*",
"dbgpt.experimental",
"dbgpt.experimental.*",
"dbgpt.model",
"dbgpt.model.proxy",
"dbgpt.model.proxy.*",
"dbgpt.model.operators",
"dbgpt.model.operators.*",
"dbgpt.model.utils",
"dbgpt.model.utils.*",
"dbgpt.model.adapter",
"dbgpt.rag",
"dbgpt.rag.*",
"dbgpt.storage",
"dbgpt.storage.*",
"dbgpt.util",
"dbgpt.util.*",
"dbgpt.vis",
"dbgpt.vis.*",
],
)
class PrintExtrasCommand(setuptools.Command):
description = "print extras_require"
user_options = [
("output=", "o", "Path to output the extras_require JSON"),
]
def initialize_options(self):
self.output = None
def finalize_options(self):
if self.output is None:
raise ValueError("output is not set")
def run(self):
with open(self.output, "w") as f:
json.dump(setup_spec.unique_extras, f, indent=2)
setuptools.setup(
name="dbgpt",
packages=packages,
version=DB_GPT_VERSION,
author="csunny",
author_email="cfqcsunny@gmail.com",
description="DB-GPT is an experimental open-source project that uses localized GPT "
"large models to interact with your data and environment."
" With this solution, you can be assured that there is no risk of data leakage, "
"and your data is 100% private and secure.",
long_description=long_description,
long_description_content_type="text/markdown",
install_requires=setup_spec.install_requires,
url="https://github.com/eosphoros-ai/DB-GPT",
license="https://opensource.org/license/mit/",
python_requires=">=3.10",
extras_require=setup_spec.unique_extras,
cmdclass={
"print_extras": PrintExtrasCommand,
},
entry_points={
"console_scripts": [
"dbgpt=dbgpt.cli.cli_scripts:main",
],
},
)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。