代码拉取完成,页面将自动刷新
package onnxruntime_go
import (
"fmt"
"math"
"math/rand"
"os"
"runtime"
"testing"
)
// Always use the same RNG seed for benchmarks, so we can compare the
// performance on the same random input data.
const benchmarkRNGSeed = 12345678
// If the ONNXRUNTIME_SHARED_LIBRARY_PATH environment variable is set, then
// we'll try to use its contents as the location of the shared library for
// these tests. Otherwise, we'll fall back to trying the shared library copies
// in the test_data directory.
func getTestSharedLibraryPath(t testing.TB) string {
toReturn := os.Getenv("ONNXRUNTIME_SHARED_LIBRARY_PATH")
if toReturn != "" {
return toReturn
}
if runtime.GOOS == "windows" {
return "test_data/onnxruntime.dll"
}
if runtime.GOARCH == "arm64" {
if runtime.GOOS == "darwin" {
return "test_data/onnxruntime_arm64.dylib"
}
return "test_data/onnxruntime_arm64.so"
}
if runtime.GOARCH == "amd64" && runtime.GOOS == "darwin" {
return "test_data/onnxruntime_amd64.dylib"
}
return "test_data/onnxruntime.so"
}
// This must be called prior to running each test.
func InitializeRuntime(t testing.TB) {
if IsInitialized() {
return
}
SetSharedLibraryPath(getTestSharedLibraryPath(t))
e := InitializeEnvironment()
if e != nil {
t.Fatalf("Failed setting up onnxruntime environment: %s\n", e)
}
}
// Should be called at the end of each test to de-initialize the runtime.
func CleanupRuntime(t testing.TB) {
e := DestroyEnvironment()
if e != nil {
t.Fatalf("Error cleaning up environment: %s\n", e)
}
}
// Returns nil if a and b are within a small delta of one another, otherwise
// returns an error indicating their values.
func floatsEqual(a, b float32) error {
diff := a - b
if diff < 0 {
diff = -diff
}
// Arbitrarily chosen precision. (Unfortunately, going higher than this may
// cause test failures, since the Sum operator doesn't have the same
// results as doing sums purely in Go.)
if diff >= 0.000001 {
return fmt.Errorf("Values differ by too much: %f vs %f", a, b)
}
return nil
}
// Returns an error if any element between a and b don't match.
func allFloatsEqual(a, b []float32) error {
if len(a) != len(b) {
return fmt.Errorf("Length mismatch: %d vs %d", len(a), len(b))
}
for i := range a {
e := floatsEqual(a[i], b[i])
if e != nil {
return fmt.Errorf("Data element %d doesn't match: %s", i, e)
}
}
return nil
}
// Returns an empty tensor with the given type and shape, or fails the test on
// error.
func newTestTensor[T TensorData](t testing.TB, s Shape) *Tensor[T] {
toReturn, e := NewEmptyTensor[T](s)
if e != nil {
t.Fatalf("Failed creating empty tensor with shape %s: %s\n", s, e)
}
return toReturn
}
func TestGetVersion(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
version := GetVersion()
if version == "" {
t.Fatalf("Not found version onnxruntime library")
}
t.Logf("Found onnxruntime library version: %s\n", version)
}
func TestTensorTypes(t *testing.T) {
type myFloat float64
dataType := TensorElementDataType(GetTensorElementDataType[myFloat]())
expected := TensorElementDataType(TensorElementDataTypeDouble)
if dataType != expected {
t.Fatalf("Expected float64 data type to be %d (%s), got %d (%s)\n",
expected, expected, dataType, dataType)
}
t.Logf("Got data type for float64-based double: %d (%s)\n",
dataType, dataType)
}
func TestCreateTensor(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
s := NewShape(1, 2, 3)
tensor1, e := NewEmptyTensor[uint8](s)
if e != nil {
t.Fatalf("Failed creating %s uint8 tensor: %s\n", s, e)
}
defer tensor1.Destroy()
if len(tensor1.GetData()) != 6 {
t.Logf("Incorrect data length for tensor1: %d\n",
len(tensor1.GetData()))
}
// Make sure that the underlying tensor created a copy of the shape we
// passed to NewEmptyTensor.
s[1] = 3
if tensor1.GetShape()[1] == s[1] {
t.Fatalf("Modifying the original shape incorrectly changed the " +
"tensor's shape.\n")
}
// Try making a tensor with a different data type.
s = NewShape(2, 5)
data := []float32{1.0}
_, e = NewTensor(s, data)
if e == nil {
t.Fatalf("Didn't get error when creating a tensor with too little " +
"data.\n")
}
t.Logf("Got expected error when creating a tensor without enough data: "+
"%s\n", e)
// It shouldn't be an error to create a tensor with too *much* underlying
// data; we'll just use the first portion of it.
data = []float32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
tensor2, e := NewTensor(s, data)
if e != nil {
t.Fatalf("Error creating tensor with data: %s\n", e)
}
defer tensor2.Destroy()
// Make sure the tensor's internal slice only refers to the part we care
// about, and not the entire slice.
if len(tensor2.GetData()) != 10 {
t.Fatalf("New tensor data contains %d elements, when it should "+
"contain 10.\n", len(tensor2.GetData()))
}
}
func TestBadTensorShapes(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
s := NewShape()
_, e := NewEmptyTensor[float64](s)
if e == nil {
t.Fatalf("Didn't get an error when creating a tensor with an empty " +
"shape.\n")
}
t.Logf("Got expected error when creating a tensor with an empty shape: "+
"%s\n", e)
s = NewShape(10, 0, 10)
_, e = NewEmptyTensor[uint16](s)
if e == nil {
t.Fatalf("Didn't get an error when creating a tensor with a shape " +
"containing a 0 dimension.\n")
}
t.Logf("Got expected error when creating a tensor with a 0 dimension: "+
"%s\n", e)
s = NewShape(10, 10, -10)
_, e = NewEmptyTensor[int32](s)
if e == nil {
t.Fatalf("Didn't get an error when creating a tensor with a negative" +
" dimension.\n")
}
t.Logf("Got expected error when creating a tensor with a negative "+
"dimension: %s\n", e)
s = NewShape(10, -10, -10)
_, e = NewEmptyTensor[uint64](s)
if e == nil {
t.Fatalf("Didn't get an error when creating a tensor with two " +
"negative dimensions.\n")
}
t.Logf("Got expected error when creating a tensor with two negative "+
"dimensions: %s\n", e)
s = NewShape(int64(1)<<62, 1, int64(1)<<62)
_, e = NewEmptyTensor[float32](s)
if e == nil {
t.Fatalf("Didn't get an error when creating a tensor with an " +
"overflowing shape.\n")
}
t.Logf("Got expected error when creating a tensor with an overflowing "+
"shape: %s\n", e)
}
func TestCloneTensor(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
originalData := []float32{1, 2, 3, 4}
originalTensor, e := NewTensor(NewShape(2, 2), originalData)
if e != nil {
t.Fatalf("Error creating tensor: %s\n", e)
}
clone, e := originalTensor.Clone()
if e != nil {
t.Fatalf("Error cloning tensor: %s\n", e)
}
if !clone.GetShape().Equals(originalTensor.GetShape()) {
t.Fatalf("Clone shape (%s) doesn't match original shape (%s)\n",
clone.GetShape(), originalTensor.GetShape())
}
cloneData := clone.GetData()
for i := range originalData {
if cloneData[i] != originalData[i] {
t.Fatalf("Clone data incorrect at index %d: %f (expected %f)\n",
i, cloneData[i], originalData[i])
}
}
cloneData[2] = 1337
if originalData[2] != 3 {
t.Fatalf("Modifying clone data effected the original.\n")
}
}
func TestZeroTensorContents(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
a := newTestTensor[float64](t, NewShape(3, 4, 5))
defer a.Destroy()
data := a.GetData()
for i := range data {
data[i] = float64(i)
}
t.Logf("Before zeroing: a[%d] = %f\n", len(data)-1, data[len(data)-1])
a.ZeroContents()
for i, v := range data {
if v != 0.0 {
t.Fatalf("a[%d] = %f, expected it to be set to 0.\n", i, v)
}
}
// Do the same basic test with a CustomDataTensor
shape := NewShape(2, 3, 4, 5)
customData := randomBytes(123, 2*shape.FlattenedSize())
b, e := NewCustomDataTensor(shape, customData, TensorElementDataTypeUint16)
if e != nil {
t.Fatalf("Error creating custom data tensor: %s\n", e)
}
defer b.Destroy()
for i := range customData {
// This will wrap around, but doesn't matter. We just need arbitrary
// nonzero data for the test.
customData[i] = uint8(i)
}
t.Logf("Start of custom data before zeroing: % x\n", customData[0:10])
b.ZeroContents()
for i, v := range customData {
if v != 0 {
t.Fatalf("b[%d] = %d, expected it to be set to 0.\n", i, v)
}
}
}
// This test makes sure that functions taking .onnx data don't crash when
// passed an empty slice. (This used to be a bug.)
func TestEmptyONNXFiles(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
inputNames := []string{"whatever"}
outputNames := []string{"whatever_out"}
dummyIn := newTestTensor[float32](t, NewShape(1))
defer dummyIn.Destroy()
dummyOut := newTestTensor[float32](t, NewShape(1))
defer dummyOut.Destroy()
inputTensors := []Value{dummyIn}
outputTensors := []Value{dummyOut}
_, e := NewAdvancedSessionWithONNXData([]byte{}, inputNames, outputNames,
inputTensors, outputTensors, nil)
if e == nil {
// Really we're checking for a panic due to the empty slice, rather
// than a nil error.
t.Fatalf("Didn't get expected error when creating session.\n")
}
t.Logf("Got expected error creating session with no ONNX content: %s\n", e)
_, e = NewDynamicAdvancedSessionWithONNXData([]byte{}, inputNames,
outputNames, nil)
if e == nil {
t.Fatalf("Didn't get expected error when creating dynamic advanced " +
"session.\n")
}
t.Logf("Got expected error when creating dynamic session with no ONNX "+
"content: %s\n", e)
_, _, e = GetInputOutputInfoWithONNXData([]byte{})
if e == nil {
t.Fatalf("Didn't get expected error when getting input/output info " +
"with no ONNX content.\n")
}
t.Logf("Got expected error when getting input/output info with no "+
"ONNX content: %s\n", e)
_, e = GetModelMetadataWithONNXData([]byte{})
if e == nil {
t.Fatalf("Didn't get expected error when getting metadata with no " +
"ONNX content.\n")
}
t.Logf("Got expected error when getting metadata with no ONNX "+
"content: %s\n", e)
}
func TestLegacyAPI(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
// We'll use this network simply due to its simple input and output format,
// as well as it using the same data type for inputs and outputs. See
// TestNonAsciiPath for more comments.
filePath := "test_data/example ż 大 김.onnx"
inputData := []int32{12, 21}
input, e := NewTensor(NewShape(1, 2), inputData)
if e != nil {
t.Fatalf("Error creating input tensor: %s\n", e)
}
defer input.Destroy()
output := newTestTensor[int32](t, NewShape(1))
defer output.Destroy()
session, e := NewSession[int32](filePath, []string{"in"}, []string{"out"},
[]*Tensor[int32]{input}, []*Tensor[int32]{output})
if e != nil {
t.Fatalf("Error creating sesion via legacy API: %s\n", e)
}
e = session.Run()
if e != nil {
t.Fatalf("Error running session: %s\n", e)
}
expected := inputData[0] + inputData[1]
result := output.GetData()[0]
if result != expected {
t.Errorf("Incorrect result. Expected %d, got %d.\n", expected, result)
}
}
func TestLegacyAPIDynamic(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
filePath := "test_data/example ż 大 김.onnx"
inputData := []int32{12, 21}
input, e := NewTensor(NewShape(1, 2), inputData)
if e != nil {
t.Fatalf("Error creating input tensor: %s\n", e)
}
defer input.Destroy()
output := newTestTensor[int32](t, NewShape(1))
defer output.Destroy()
session, e := NewDynamicSession[int32, int32](filePath,
[]string{"in"}, []string{"out"})
if e != nil {
t.Fatalf("Error creating sesion via legacy API: %s\n", e)
}
e = session.Run([]*Tensor[int32]{input}, []*Tensor[int32]{output})
if e != nil {
t.Fatalf("Error running session: %s\n", e)
}
expected := inputData[0] + inputData[1]
result := output.GetData()[0]
if result != expected {
t.Errorf("Incorrect result. Expected %d, got %d.\n", expected, result)
}
}
func TestEnableDisableTelemetry(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
e := EnableTelemetry()
if e != nil {
t.Errorf("Error enabling onnxruntime telemetry: %s\n", e)
}
e = DisableTelemetry()
if e != nil {
t.Errorf("Error disabling onnxruntime telemetry: %s\n", e)
}
e = EnableTelemetry()
if e != nil {
t.Errorf("Error re-enabling onnxruntime telemetry after "+
"disabling: %s\n", e)
}
}
func TestArbitraryTensors(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
tensorShape := NewShape(2, 2)
tensorA, e := NewTensor(tensorShape, []uint8{1, 2, 3, 4})
if e != nil {
t.Fatalf("Error creating uint8 tensor: %s\n", e)
}
defer tensorA.Destroy()
tensorB, e := NewTensor(tensorShape, []float64{5, 6, 7, 8})
if e != nil {
t.Fatalf("Error creating float64 tensor: %s\n", e)
}
defer tensorB.Destroy()
tensorC, e := NewTensor(tensorShape, []int16{9, 10, 11, 12})
if e != nil {
t.Fatalf("Error creating int16 tensor: %s\n", e)
}
defer tensorC.Destroy()
tensorList := []ArbitraryTensor{tensorA, tensorB, tensorC}
for i, v := range tensorList {
ortValue := v.GetInternals().ortValue
t.Logf("ArbitraryTensor %d: Data type %d, shape %s, OrtValue %p\n",
i, v.DataType(), v.GetShape(), ortValue)
}
}
// Used for testing the operation of test_data/example_multitype.onnx
func randomMultitypeInputs(t *testing.T, seed int64) (*Tensor[uint8],
*Tensor[float64]) {
rng := rand.New(rand.NewSource(seed))
inputA := newTestTensor[uint8](t, NewShape(1, 1, 1))
// We won't use newTestTensor here, otherwise we won't have a chance to
// destroy inputA on failure.
inputB, e := NewEmptyTensor[float64](NewShape(1, 2, 2))
if e != nil {
inputA.Destroy()
t.Fatalf("Failed creating input B: %s\n", e)
}
inputA.GetData()[0] = uint8(rng.Intn(256))
for i := 0; i < 4; i++ {
inputB.GetData()[i] = rng.Float64()
}
return inputA, inputB
}
// Used when checking the output produced by test_data/example_multitype.onnx
func getExpectedMultitypeOutputs(inputA *Tensor[uint8],
inputB *Tensor[float64]) ([]int16, []int64) {
outputA := make([]int16, 4)
dataA := inputA.GetData()[0]
dataB := inputB.GetData()
for i := 0; i < len(outputA); i++ {
outputA[i] = int16((dataB[i] * float64(dataA)) - 512)
}
return outputA, []int64{int64(dataA) * 1234}
}
// Verifies that the given tensor's data matches the expected content. Prints
// an error and fails the test if anything doesn't match.
func verifyTensorData[T TensorData](t *testing.T, tensor *Tensor[T],
expectedContent []T) {
data := tensor.GetData()
if len(data) != len(expectedContent) {
t.Fatalf("Expected tensor to contain %d elements, got %d elements.\n",
len(expectedContent), len(data))
}
for i, v := range expectedContent {
if v != data[i] {
t.Fatalf("Data mismatch at index %d: expected %v, got %v\n", i, v,
data[i])
}
}
}
// Tests a session taking multiple input tensors of different types and
// producing multiple output tensors of different types.
func TestDifferentInputOutputTypes(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
inputA, inputB := randomMultitypeInputs(t, 9999)
defer inputA.Destroy()
defer inputB.Destroy()
outputA := newTestTensor[int16](t, NewShape(1, 2, 2))
defer outputA.Destroy()
outputB := newTestTensor[int64](t, NewShape(1, 1, 1))
defer outputB.Destroy()
// Decided to toss in an "ArbitraryTensor" here to ensure that it remains
// compatible with Value in the future.
session, e := NewAdvancedSession("test_data/example_multitype.onnx",
[]string{"InputA", "InputB"}, []string{"OutputA", "OutputB"},
[]Value{inputA, inputB}, []ArbitraryTensor{outputA, outputB}, nil)
if e != nil {
t.Fatalf("Failed creating session: %s\n", e)
}
defer session.Destroy()
e = session.Run()
if e != nil {
t.Fatalf("Error running session: %s\n", e)
}
expectedA, expectedB := getExpectedMultitypeOutputs(inputA, inputB)
verifyTensorData(t, outputA, expectedA)
verifyTensorData(t, outputB, expectedB)
}
func TestDynamicDifferentInputOutputTypes(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
session, e := NewDynamicAdvancedSession("test_data/example_multitype.onnx",
[]string{"InputA", "InputB"}, []string{"OutputA", "OutputB"}, nil)
defer session.Destroy()
numTests := 100
aInputs := make([]*Tensor[uint8], numTests)
bInputs := make([]*Tensor[float64], numTests)
aOutputs := make([]*Tensor[int16], numTests)
bOutputs := make([]*Tensor[int64], numTests)
// Make sure we clean up all the tensors created for this test, even if we
// somehow fail before we've created them all.
defer func() {
for i := 0; i < numTests; i++ {
if aInputs[i] != nil {
aInputs[i].Destroy()
}
if bInputs[i] != nil {
bInputs[i].Destroy()
}
if aOutputs[i] != nil {
aOutputs[i].Destroy()
}
if bOutputs[i] != nil {
bOutputs[i].Destroy()
}
}
}()
// Actually create the inputs and run the tests.
for i := 0; i < numTests; i++ {
aInputs[i], bInputs[i] = randomMultitypeInputs(t, 999+int64(i))
aOutputs[i] = newTestTensor[int16](t, NewShape(1, 2, 2))
bOutputs[i] = newTestTensor[int64](t, NewShape(1, 1, 1))
e = session.Run([]Value{aInputs[i], bInputs[i]},
[]Value{aOutputs[i], bOutputs[i]})
if e != nil {
t.Fatalf("Failed running session for test %d: %s\n", i, e)
}
}
// Now that all the tests ran, check the outputs. If the
// DynamicAdvancedSession worked properly, each run should have only
// modified its given outputs.
for i := 0; i < numTests; i++ {
expectedA, expectedB := getExpectedMultitypeOutputs(aInputs[i],
bInputs[i])
verifyTensorData(t, aOutputs[i], expectedA)
verifyTensorData(t, bOutputs[i], expectedB)
}
}
func TestDynamicAllocatedOutputTensor(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
session, e := NewDynamicAdvancedSession("test_data/example_multitype.onnx",
[]string{"InputA", "InputB"}, []string{"OutputA", "OutputB"}, nil)
if e != nil {
t.Fatalf("Error creating session: %s\n", e)
}
defer session.Destroy()
// Actually create the inputs and run the tests.
aInput, bInput := randomMultitypeInputs(t, 999)
var outputs [2]Value
e = session.Run([]Value{aInput, bInput}, outputs[:])
if e != nil {
t.Fatalf("Failed running session: %s\n", e)
}
defer func() {
for _, output := range outputs {
output.Destroy()
}
}()
expectedA, expectedB := getExpectedMultitypeOutputs(aInput, bInput)
expectedShape := NewShape(1, 2, 2)
outputA, ok := outputs[0].(*Tensor[int16])
if !ok {
t.Fatalf("Expected outputA to be of type %T, got of type %T\n",
outputA, outputs[0])
}
if !outputA.shape.Equals(expectedShape) {
t.Fatalf("Expected outputA to be of shape %s, got of shape %s\n",
expectedShape, outputA.shape)
}
verifyTensorData(t, outputA, expectedA)
outputB, ok := outputs[1].(*Tensor[int64])
expectedShape = NewShape(1, 1, 1)
if !ok {
t.Fatalf("Expected outputB to be of type %T, got of type %T\n",
outputB, outputs[1])
}
if !outputB.shape.Equals(expectedShape) {
t.Fatalf("Expected outputB to be of shape %s, got of shape %s\n",
expectedShape, outputB.shape)
}
verifyTensorData(t, outputB, expectedB)
}
// Makes sure that the sum of each vector in the input tensor matches the
// corresponding scalar in the output tensor. Used when testing tensors with
// unknown batch dimensions.
// NOTE: Destroys the input and output tensors before returning, regardless of
// test success.
func checkVectorSum(input *Tensor[float32], output *Tensor[float32],
t testing.TB) {
defer input.Destroy()
defer output.Destroy()
// Make sure the sizes are what we expect.
inputShape := input.GetShape()
outputShape := output.GetShape()
if len(inputShape) != 2 {
t.Fatalf("Expected a 2-dimensional input shape, got %v\n", inputShape)
}
if len(outputShape) != 1 {
t.Fatalf("Expected 1-dimensional output shape, got %v\n", outputShape)
}
if inputShape[0] != outputShape[0] {
t.Fatalf("Input and output batch dimensions don't match (%d vs %d)\n",
inputShape[0], outputShape[0])
}
// Compute the sums in Go
batchSize := inputShape[0]
vectorLength := inputShape[1]
expectedSums := make([]float32, batchSize)
for i := int64(0); i < batchSize; i++ {
inputVector := input.GetData()[i*vectorLength : (i+1)*vectorLength]
sum := float32(0.0)
for _, v := range inputVector {
sum += v
}
expectedSums[i] = sum
}
e := allFloatsEqual(expectedSums, output.GetData())
if e != nil {
t.Fatalf("ONNX-produced sums don't match CPU-produced sums: %s\n", e)
}
}
func TestDynamicInputOutputAxes(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
netPath := "test_data/example_dynamic_axes.onnx"
session, e := NewDynamicAdvancedSession(netPath,
[]string{"input_vectors"}, []string{"output_scalars"}, nil)
if e != nil {
t.Fatalf("Error loading %s: %s\n", netPath, e)
}
defer session.Destroy()
maxBatchSize := 99
// The example network takes a dynamic batch size of vectors containing 10
// elements each.
dataBuffer := make([]float32, maxBatchSize*10)
// Try running the session with many different batch sizes
for i := 11; i <= maxBatchSize; i += 11 {
// Create an input with the new batch size.
inputShape := NewShape(int64(i), 10)
input, e := NewTensor(inputShape, dataBuffer)
if e != nil {
t.Fatalf("Error creating input tensor with shape %v: %s\n",
inputShape, e)
}
// Populate the input with new random floats.
fillRandomFloats(input.GetData(), 1234)
// Run the session; make onnxruntime allocate the output tensor for us.
outputs := []Value{nil}
e = session.Run([]Value{input}, outputs)
if e != nil {
input.Destroy()
t.Fatalf("Error running the session with batch size %d: %s\n",
i, e)
}
// The checkVectorSum function will destroy the input and output tensor
// regardless of their correctness.
checkVectorSum(input, outputs[0].(*Tensor[float32]), t)
input.Destroy()
t.Logf("Batch size %d seems OK!\n", i)
}
}
func TestWrongInputs(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
session, e := NewDynamicAdvancedSession("test_data/example_multitype.onnx",
[]string{"InputA", "InputB"}, []string{"OutputA", "OutputB"}, nil)
defer session.Destroy()
inputA, inputB := randomMultitypeInputs(t, 123456)
defer inputA.Destroy()
defer inputB.Destroy()
outputA := newTestTensor[int16](t, NewShape(1, 2, 2))
defer outputA.Destroy()
outputB := newTestTensor[int64](t, NewShape(1, 1, 1))
defer outputB.Destroy()
// Make sure that passing a tensor with the wrong type but correct shape
// will correctly cause an error rather than a crash, whether used as an
// input or output.
wrongTypeTensor := newTestTensor[float32](t, NewShape(1, 2, 2))
defer wrongTypeTensor.Destroy()
e = session.Run([]Value{inputA, inputB}, []Value{wrongTypeTensor, outputB})
if e == nil {
t.Fatalf("Didn't get expected error when passing a float32 tensor in" +
" place of an int16 output tensor.\n")
}
t.Logf("Got expected error when passing a float32 tensor in place of an "+
"int16 output tensor: %s\n", e)
e = session.Run([]Value{inputA, wrongTypeTensor},
[]Value{outputA, outputB})
if e == nil {
t.Fatalf("Didn't get expected error when passing a float32 tensor in" +
" place of a float64 input tensor.\n")
}
t.Logf("Got expected error when passing a float32 tensor in place of a "+
"float64 input tensor: %s\n", e)
// Make sure that passing a tensor with the wrong shape but correct type
// will cause an error rather than a crash, when using as an input or an
// output.
wrongShapeInput := newTestTensor[uint8](t, NewShape(22))
defer wrongShapeInput.Destroy()
e = session.Run([]Value{wrongShapeInput, inputB},
[]Value{outputA, outputB})
if e == nil {
t.Fatalf("Didn't get expected error when running with an incorrectly" +
" shaped input.\n")
}
t.Logf("Got expected error when running with an incorrectly shaped "+
"input: %s\n", e)
wrongShapeOutput := newTestTensor[int64](t, NewShape(1, 1, 1, 1, 1, 1))
defer wrongShapeOutput.Destroy()
e = session.Run([]Value{inputA, inputB},
[]Value{outputA, wrongShapeOutput})
if e == nil {
t.Fatalf("Didn't get expected error when running with an incorrectly" +
" shaped output.\n")
}
t.Logf("Got expected error when running with an incorrectly shaped "+
"output: %s\n", e)
e = session.Run([]Value{inputA, inputB}, []Value{outputA, outputB})
if e != nil {
t.Fatalf("Got error attempting to (correctly) Run a session after "+
"attempting to use incorrect inputs or outputs: %s\n", e)
}
}
func TestGetInputOutputInfo(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
file := "test_data/example_several_inputs_and_outputs.onnx"
inputs, outputs, e := GetInputOutputInfo(file)
if e != nil {
t.Fatalf("Error getting input and output info for %s: %s\n", file, e)
}
if len(inputs) != 3 {
t.Fatalf("Expected 3 inputs, got %d\n", len(inputs))
}
if len(outputs) != 2 {
t.Fatalf("Expected 2 outputs, got %d\n", len(outputs))
}
for i, v := range inputs {
t.Logf("Input %d: %s\n", i, &v)
}
for i, v := range outputs {
t.Logf("Output %d: %s\n", i, &v)
}
if outputs[1].Name != "output 2" {
t.Errorf("Incorrect output 1 name: %s, expected \"output 2\"\n",
outputs[1].Name)
}
expectedShape := NewShape(1, 2, 3, 4, 5)
if !outputs[1].Dimensions.Equals(expectedShape) {
t.Errorf("Incorrect output 1 shape: %s, expected %s\n",
outputs[1].Dimensions, expectedShape)
}
var expectedType TensorElementDataType = TensorElementDataTypeDouble
if outputs[1].DataType != expectedType {
t.Errorf("Incorrect output 1 data type: %s, expected %s\n",
outputs[1].DataType, expectedType)
}
if inputs[0].Name != "input 1" {
t.Errorf("Incorrect input 0 name: %s, expected \"input 1\"\n",
inputs[0].Name)
}
expectedShape = NewShape(2, 5, 2, 5)
if !inputs[0].Dimensions.Equals(expectedShape) {
t.Errorf("Incorrect input 0 shape: %s, expected %s\n",
inputs[0].Dimensions, expectedShape)
}
expectedType = TensorElementDataTypeInt32
if inputs[0].DataType != expectedType {
t.Errorf("Incorrect input 0 data type: %s, expected %s\n",
inputs[0].DataType, expectedType)
}
}
func TestModelMetadata(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
file := "test_data/example_big_compute.onnx"
metadata, e := GetModelMetadata(file)
if e != nil {
t.Fatalf("Error getting metadata for %s: %s\n", file, e)
}
// We'll just test Destroy once; after this we won't check its return value
e = metadata.Destroy()
if e != nil {
t.Fatalf("Error destroying metadata: %s\n", e)
}
// Try getting the metadata from a session instead of from a file.
// NOTE: All of the expected values here were manually set using the
// test_data/modify_metadata.py script after generating the network. See
// that script for the expected values of each of the metadata accesors.
session, e := NewDynamicAdvancedSession(file, []string{"Input"},
[]string{"Output"}, nil)
if e != nil {
t.Fatalf("Error creating session: %s\n", e)
}
defer session.Destroy()
metadata, e = session.GetModelMetadata()
if e != nil {
t.Fatalf("Error getting metadata from DynamicAdvancedSession: %s\n", e)
}
defer metadata.Destroy()
producerName, e := metadata.GetProducerName()
if e != nil {
t.Errorf("Error getting producer name: %s\n", e)
} else {
t.Logf("Got producer name: %s\n", producerName)
}
graphName, e := metadata.GetGraphName()
if e != nil {
t.Errorf("Error getting graph name: %s\n", e)
} else {
t.Logf("Got graph name: %s\n", graphName)
}
domainStr, e := metadata.GetDomain()
if e != nil {
t.Errorf("Error getting domain: %s\n", e)
} else {
t.Logf("Got domain: %s\n", domainStr)
if domainStr != "test domain" {
t.Errorf("Incorrect domain string, expected \"test domain\"\n")
}
}
description, e := metadata.GetDescription()
if e != nil {
t.Errorf("Error getting description: %s\n", e)
} else {
t.Logf("Got description: %s\n", description)
}
version, e := metadata.GetVersion()
if e != nil {
t.Errorf("Error getting version: %s\n", e)
} else {
t.Logf("Got version: %d\n", version)
if version != 1337 {
t.Errorf("Incorrect version number, expected 1337\n")
}
}
mapKeys, e := metadata.GetCustomMetadataMapKeys()
if e != nil {
t.Fatalf("Error getting custom metadata keys: %s\n", e)
}
t.Logf("Got %d custom metadata map keys.\n", len(mapKeys))
if len(mapKeys) != 2 {
t.Errorf("Incorrect number of custom metadata keys, expected 2")
}
for _, k := range mapKeys {
value, present, e := metadata.LookupCustomMetadataMap(k)
if e != nil {
t.Errorf("Error looking up key %s in custom metadata: %s\n", k, e)
} else {
if !present {
t.Errorf("LookupCustomMetadataMap didn't return true for a " +
"key that should be present in the map\n")
}
t.Logf(" Metadata key \"%s\" = \"%s\"\n", k, value)
}
}
badValue, present, e := metadata.LookupCustomMetadataMap("invalid key")
if len(badValue) != 0 {
t.Fatalf("Didn't get an empty string when looking up an invalid "+
"metadata key, got \"%s\" instead\n", badValue)
}
if present {
t.Errorf("LookupCustomMetadataMap didn't return false for a key that" +
" isn't in the map\n")
}
// Tossing in this check, since the docs aren't clear on this topic. (The
// docs specify returning an empty string, but do not mention a non-NULL
// OrtStatus.) At the time of writing, it does _not_ return an error.
if e == nil {
t.Logf("Informational: looking up an invalid metadata key doesn't " +
"return an error\n")
} else {
t.Logf("Informational: got error when looking up an invalid "+
"metadata key: %s\n", e)
}
}
func randomBytes(seed, n int64) []byte {
toReturn := make([]byte, n)
rng := rand.New(rand.NewSource(seed))
rng.Read(toReturn)
return toReturn
}
func fillRandomFloats(dst []float32, seed int64) {
rng := rand.New(rand.NewSource(seed))
for i := range dst {
dst[i] = rng.Float32()
}
}
func TestCustomDataTensors(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
shape := NewShape(2, 3, 4, 5)
tensorData := randomBytes(123, 2*shape.FlattenedSize())
// This could have been created using a Tensor[uint16], but we'll make sure
// it works this way, too.
v, e := NewCustomDataTensor(shape, tensorData, TensorElementDataTypeUint16)
if e != nil {
t.Fatalf("Error creating uint16 CustomDataTensor: %s\n", e)
}
shape[0] = 6
if v.GetShape().Equals(shape) {
t.Fatalf("CustomDataTensor didn't properly clone its shape")
}
e = v.Destroy()
if e != nil {
t.Fatalf("Error destroying CustomDataTensor: %s\n", e)
}
tensorData = randomBytes(1234, 2*shape.FlattenedSize())
v, e = NewCustomDataTensor(shape, tensorData, TensorElementDataTypeFloat16)
if e != nil {
t.Fatalf("Error creating float16 tensor: %s\n", e)
}
e = v.Destroy()
if e != nil {
t.Fatalf("Error destroying float16 tensor: %s\n", e)
}
// Make sure we don't fail if providing more data than necessary
shape[0] = 1
v, e = NewCustomDataTensor(shape, tensorData,
TensorElementDataTypeBFloat16)
if e != nil {
t.Fatalf("Got error when creating a tensor with more data than "+
"necessary: %s\n", e)
}
v.Destroy()
// Make sure we fail when using a bad shape
shape = NewShape(0, -1, -2)
v, e = NewCustomDataTensor(shape, tensorData, TensorElementDataTypeFloat16)
if e == nil {
v.Destroy()
t.Fatalf("Didn't get error when creating custom tensor with an " +
"invalid shape\n")
}
t.Logf("Got expected error creating tensor with invalid shape: %s\n", e)
shape = NewShape(1, 2, 3, 4, 5)
tensorData = []byte{1, 2, 3, 4}
v, e = NewCustomDataTensor(shape, tensorData, TensorElementDataTypeUint8)
if e == nil {
v.Destroy()
t.Fatalf("Didn't get error when creating custom tensor with too " +
"little data\n")
}
t.Logf("Got expected error when creating custom data tensor with "+
"too little data: %s\n", e)
// Make sure we fail when using a bad type
tensorData = []byte{1, 2, 3, 4, 5, 6, 7, 8}
badType := TensorElementDataType(0xffffff)
v, e = NewCustomDataTensor(NewShape(2), tensorData, badType)
if e == nil {
v.Destroy()
t.Fatalf("Didn't get error when creating tensor with bad type\n")
}
t.Logf("Got expected error when creating custom data tensor with bad "+
"type: %s\n", e)
}
// Converts a slice of floats to their representation as bfloat16 bytes.
func floatsToBfloat16(f []float32) []byte {
toReturn := make([]byte, 2*len(f))
// bfloat16 is just a truncated version of a float32
for i := range f {
bf16Bits := uint16(math.Float32bits(f[i]) >> 16)
toReturn[i*2] = uint8(bf16Bits)
toReturn[i*2+1] = uint8(bf16Bits >> 8)
}
return toReturn
}
func TestFloat16Network(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
// The network takes a 1x2x2x2 float16 input
inputData := []byte{
// 0.0, 1.0, 2.0, 3.0
0x00, 0x00, 0x00, 0x3c, 0x00, 0x40, 0x00, 0x42,
// 4.0, 5.0, 6.0, 7.0
0x00, 0x44, 0x00, 0x45, 0x00, 0x46, 0x00, 0x47,
}
// The network produces a 1x2x2x2 bfloat16 output: the input multiplied
// by 3
expectedOutput := floatsToBfloat16([]float32{0, 3, 6, 9, 12, 15, 18, 21})
outputData := make([]byte, len(expectedOutput))
inputTensor, e := NewCustomDataTensor(NewShape(1, 2, 2, 2), inputData,
TensorElementDataTypeFloat16)
if e != nil {
t.Fatalf("Error creating input tensor: %s\n", e)
}
defer inputTensor.Destroy()
outputTensor, e := NewCustomDataTensor(NewShape(1, 2, 2, 2), outputData,
TensorElementDataTypeBFloat16)
if e != nil {
t.Fatalf("Error creating output tensor: %s\n", e)
}
defer outputTensor.Destroy()
session, e := NewAdvancedSession("test_data/example_float16.onnx",
[]string{"InputA"}, []string{"OutputA"},
[]Value{inputTensor}, []Value{outputTensor}, nil)
if e != nil {
t.Fatalf("Error creating session: %s\n", e)
}
defer session.Destroy()
e = session.Run()
if e != nil {
t.Fatalf("Error running session: %s\n", e)
}
for i := range outputData {
if outputData[i] != expectedOutput[i] {
t.Fatalf("Incorrect output byte at index %d: 0x%02x (expected "+
"0x%02x)\n", i, outputData[i], expectedOutput[i])
}
}
}
// Returns a 10-element tensor randomly filled values using the given rng seed.
func randomSmallTensor(seed int64, t testing.TB) *Tensor[float32] {
toReturn, e := NewEmptyTensor[float32](NewShape(10))
if e != nil {
t.Fatalf("Error creating small tensor: %s\n", e)
}
fillRandomFloats(toReturn.GetData(), seed)
return toReturn
}
func TestONNXSequence(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
sequenceLength := int64(123)
values := make([]Value, sequenceLength)
for i := range values {
values[i] = randomSmallTensor(int64(i)+123, t)
}
defer func() {
for _, v := range values {
v.Destroy()
}
}()
sequence, e := NewSequence(values)
if e != nil {
t.Fatalf("Error creating sequence: %s\n", e)
}
defer sequence.Destroy()
sequenceContents, e := sequence.GetValues()
if e != nil {
t.Fatalf("Error getting sequence contents: %s\n", e)
}
if int64(len(sequenceContents)) != sequenceLength {
t.Fatalf("Got %d values in sequence, expected %d\n",
len(sequenceContents), sequenceLength)
}
if sequence.GetONNXType() != ONNXTypeSequence {
t.Fatalf("Got incorrect ONNX type for sequence: %s\n",
sequence.GetONNXType())
}
// Make sure we adhere to what I wrote in the docs
if !sequence.GetShape().Equals(NewShape(sequenceLength)) {
t.Fatalf("Sequence.GetShape() returned incorrect shape: %s\n",
sequence.GetShape())
}
selectedIndex := 44
selectedValue := sequenceContents[selectedIndex]
if selectedValue.GetONNXType() != ONNXTypeTensor {
t.Fatalf("Got incorrect ONNXType for value at index %d: "+
"expected %s, got %s\n", selectedIndex, ONNXType(ONNXTypeTensor),
selectedValue.GetONNXType())
}
}
func TestBadSequences(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
// Sequences containing no elements or nil entries shouldn't be allowed
_, e := NewSequence([]Value{})
if e == nil {
t.Fatalf("Didn't get expected error when creating an empty sequence\n")
}
t.Logf("Got expected error when creating an empty sequence: %s\n", e)
_, e = NewSequence([]Value{nil})
if e == nil {
t.Fatalf("Didn't get expected error when creating sequence with a " +
"nil entry.\n")
}
t.Logf("Got expected error when creating sequence with nil entry: %s\n", e)
// Sequences containing mixed data types shouldn't be allowed
tensor := randomSmallTensor(1337, t)
defer tensor.Destroy()
innerSequence, e := NewSequence([]Value{tensor})
if e != nil {
t.Fatalf("Error creating 1-element sequence: %s\n", e)
}
defer innerSequence.Destroy()
_, e = NewSequence([]Value{tensor, innerSequence})
if e == nil {
t.Fatalf("Didn't get expected error when attempting to create a "+
"mixed sequence: %s\n", e)
}
t.Logf("Got expected error when attempting a mixed sequence: %s\n", e)
// Nested sequences also aren't allowed; the C API docs don't seem to
// mention this either.
_, e = NewSequence([]Value{innerSequence, innerSequence})
if e == nil {
t.Fatalf("Didn't get an error creating a sequence with nested " +
"sequences.\n")
}
t.Logf("Got expected error when creating a sequence with nested "+
"sequences: %s\n", e)
}
func TestMap(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
testGoMap := map[int64]float64{
123: 456.7,
789: 123.4,
}
m, e := NewMapFromGoMap(testGoMap)
if e != nil {
t.Fatalf("Error creating onnx map from Go map: %s\n", e)
}
defer m.Destroy()
keys, values, e := m.GetKeysAndValues()
if e != nil {
t.Fatalf("Error getting map keys and values: %s\n", e)
}
// In real code I almost certainly would do these type assertions without
// the checks, and just panic if it was wrong. But it makes sense in a test
keysTensor, ok := keys.(*Tensor[int64])
if !ok {
t.Fatalf("Keys weren't a uint32 tensor, but %s\n",
TensorElementDataType(keysTensor.DataType()))
}
valuesTensor, ok := values.(*Tensor[float64])
if !ok {
t.Fatalf("Values weren't a float64 tensor, but %s\n",
TensorElementDataType(valuesTensor.DataType()))
}
if !keysTensor.GetShape().Equals(valuesTensor.GetShape()) {
t.Fatalf("Key and value tensor shapes don't match: %s vs %s\n",
keysTensor.GetShape(), valuesTensor.GetShape())
}
for i, k := range keysTensor.GetData() {
v := valuesTensor.GetData()[i]
e = floatsEqual(float32(v), float32(testGoMap[k]))
if e != nil {
t.Errorf("Value for key %d doesn't match: %s\n", k, e)
}
}
}
func TestBadMaps(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
// There are many, many ways I've found to create a bad map. This test only
// checks a few of them.
// We should get an error for an empty map, right? (I don't think the docs
// specify at the moment.)
_, e := NewMapFromGoMap(map[int64]float32{})
if e == nil {
t.Fatalf("Didn't get expected error creating empty map.\n")
}
t.Logf("Got expected error when creating empty map: %s\n", e)
// Floats aren't supported as keys.
floatKeysTensor := newTestTensor[float32](t, NewShape(10))
defer floatKeysTensor.Destroy()
floatValuesTensor := newTestTensor[float32](t, NewShape(10))
defer floatValuesTensor.Destroy()
_, e = NewMap(floatKeysTensor, floatValuesTensor)
if e == nil {
t.Fatalf("Didn't get expected error when using float map keys.\n")
}
t.Logf("Got expected error when using float map keys: %s\n", e)
// The length of keys and values must match.
tooManyKeysTensor := newTestTensor[int64](t, NewShape(16))
for i := range tooManyKeysTensor.GetData() {
tooManyKeysTensor.GetData()[i] = int64(i)
}
defer tooManyKeysTensor.Destroy()
_, e = NewMap(tooManyKeysTensor, floatValuesTensor)
if e == nil {
t.Fatalf("Didn't get expected error when map keys and values are " +
"different sizes.\n")
}
t.Logf("Got expected error when keys and values lengths mismatch: %s\n", e)
}
func TestSklearnNetwork(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
// These inputs and outputs were taken from the information printed by
// test_data/generate_sklearn_network.py
inputShape := NewShape(6, 4)
inputValues := []float32{
5.9, 3.0, 5.1, 1.8,
6.8, 2.8, 4.8, 1.4,
6.3, 2.3, 4.4, 1.3,
6.5, 3.0, 5.5, 1.8,
7.7, 2.8, 6.7, 2.0,
5.5, 2.5, 4.0, 1.3,
}
// "output_label": A tensor of an int64 label per set of 4 inputs
expectedPredictions := []int64{2, 1, 1, 2, 2, 1}
// "output_probability": A sequence of maps, mapping each int64 label to a
// float64 output. We'll just store them in order here.
outputProbabilities := []map[int64]float32{
{0: 0.0, 1: 0.12999998033046722, 2: 0.8699994683265686},
{0: 0.0, 1: 0.7699995636940002, 2: 0.23000003397464752},
{0: 0.0, 1: 0.969999372959137, 2: 0.029999999329447746},
{0: 0.0, 1: 0.0, 2: 0.9999993443489075},
{0: 0.0, 1: 0.0, 2: 0.9999993443489075},
{0: 0.0, 1: 0.9999993443489075, 2: 0.0},
}
modelPath := "test_data/sklearn_randomforest.onnx"
session, e := NewDynamicAdvancedSession(modelPath, []string{"X"},
[]string{"output_label", "output_probability"}, nil)
if e != nil {
t.Fatalf("Error loading %s: %s\n", modelPath, e)
}
defer session.Destroy()
// The point of this test is to make sure we get the correct types and
// results when the network allocates the output values.
outputs := []Value{nil, nil}
inputTensor, e := NewTensor(inputShape, inputValues)
if e != nil {
t.Fatalf("Error creating input tensor: %s\n", e)
}
defer inputTensor.Destroy()
e = session.Run([]Value{inputTensor}, outputs)
if e != nil {
t.Fatalf("Error running %s: %s\n", modelPath, e)
}
defer func() {
for _, v := range outputs {
v.Destroy()
}
}()
// First, check the easy part: the int64 output tensor
tensorDataType := TensorElementDataType(outputs[0].DataType())
if tensorDataType != TensorElementDataTypeInt64 {
t.Fatalf("Expected int64 output tensor, got %s\n", tensorDataType)
}
predictionTensor := outputs[0].(*Tensor[int64])
predictions := predictionTensor.GetData()
if len(predictions) != len(expectedPredictions) {
t.Fatalf("Expected %d predictions, got %d\n", len(expectedPredictions),
len(predictions))
}
for i, v := range expectedPredictions {
actualPrediction := predictions[i]
if v != actualPrediction {
t.Errorf("Incorrect prediction at index %d: %d (expected %d)\n",
i, actualPrediction, v)
}
}
// Next, check the sequence of maps. There is one map giving the fine-
// grained probabilities for each label. (Predictions is just the entry
// of each map with the highest probability.)
sequence, ok := outputs[1].(*Sequence)
if !ok {
t.Fatalf("Expected a sequence for the probabilities output, got %s\n",
outputs[1].GetONNXType())
}
probabilityMaps, e := sequence.GetValues()
if e != nil {
t.Fatalf("Error getting contents of sequence of maps: %s\n", e)
}
if len(probabilityMaps) != len(expectedPredictions) {
t.Fatalf("Expected a %d-element sequence, got %d\n",
len(expectedPredictions), len(probabilityMaps))
}
for i := range probabilityMaps {
m, isMap := probabilityMaps[i].(*Map)
if !isMap {
t.Fatalf("Output sequence index %d wasn't a map, but a %s\n", i,
probabilityMaps[i].GetONNXType())
}
keys, values, e := m.GetKeysAndValues()
if e != nil {
t.Fatalf("Error getting keys and values for map at index %d: %s\n",
i, e)
}
if !keys.GetShape().Equals(values.GetShape()) {
t.Fatalf("Key and value tensors don't match in shape: %s vs %s\n",
keys.GetShape(), values.GetShape())
}
keysTensor, ok := keys.(*Tensor[int64])
if !ok {
t.Fatalf("Keys were not an int64 tensor\n")
}
valuesTensor, ok := values.(*Tensor[float32])
if !ok {
t.Fatalf("Values were not a float32 tensor\n")
}
expectedProbabilities := outputProbabilities[i]
for j, key := range keysTensor.GetData() {
v := valuesTensor.GetData()[j]
e = floatsEqual(expectedProbabilities[key], v)
if e != nil {
t.Errorf("Expected values don't match for key %d in map "+
"index %d: %s\n", key, i, e)
}
}
}
}
// This tests that we're able to read a file containing multi-byte characters
// in the path.
func TestNonAsciiPath(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
// The test network just adds two integers and returns the result.
inputData := []int32{12, 21}
input, e := NewTensor(NewShape(1, 2), inputData)
if e != nil {
t.Fatalf("Error creating input tensor: %s\n", e)
}
defer input.Destroy()
output := newTestTensor[int32](t, NewShape(1))
defer output.Destroy()
filePath := "test_data/example ż 大 김.onnx"
session, e := NewAdvancedSession(filePath, []string{"in"}, []string{"out"},
[]Value{input}, []Value{output}, nil)
if e != nil {
t.Fatalf("Failed creating session for %s: %s\n", filePath, e)
}
e = session.Run()
if e != nil {
t.Fatalf("Error running %s: %s\n", filePath, e)
}
expected := inputData[0] + inputData[1]
result := output.GetData()[0]
if result != expected {
t.Errorf("Running %s gave the wrong result. Expected %d, got %d.\n",
filePath, expected, result)
}
}
// This tests that the *WithONNXData method works for loading a session.
// Hopefully this covers most other *WithONNXData variants, since all use the
// same code internally when creating an OrtSession in C.
func TestSessionFromDataBuffer(t *testing.T) {
// This test is almost a copy of TestNonAsciiPath, since it was fairly
// simple.
InitializeRuntime(t)
defer CleanupRuntime(t)
inputData := []int32{12, 21}
input, e := NewTensor(NewShape(1, 2), inputData)
if e != nil {
t.Fatalf("Error creating input tensor: %s\n", e)
}
defer input.Destroy()
output := newTestTensor[int32](t, NewShape(1))
defer output.Destroy()
filePath := "test_data/example ż 大 김.onnx"
fileData, e := os.ReadFile(filePath)
if e != nil {
t.Fatalf("Error buffering content of %s: %s\n", filePath, e)
}
session, e := NewAdvancedSessionWithONNXData(fileData, []string{"in"},
[]string{"out"}, []Value{input}, []Value{output}, nil)
if e != nil {
t.Fatalf("Failed creating session: %s\n", e)
}
e = session.Run()
if e != nil {
t.Fatalf("Error running session: %s\n", e)
}
expected := inputData[0] + inputData[1]
result := output.GetData()[0]
if result != expected {
t.Errorf("Incorrect result. Expected %d, got %d.\n", expected, result)
}
}
func TestScalar(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
s, e := NewEmptyScalar[float32]()
if e != nil {
t.Fatalf("Error creating empty scalar: %s\n", e)
}
if s.GetData() != 0.0 {
t.Fatalf("Empty scalar not initialized to 0: %s\n", e)
}
e = s.Destroy()
if e != nil {
t.Fatalf("Failed destroying scalar: %s\n", e)
}
s2, e := NewScalar(int64(1337))
if e != nil {
t.Fatalf("Failed creating int64 scalar: %s\n", e)
}
defer s2.Destroy()
contents := s2.GetData()
if contents != 1337 {
t.Fatalf("Incorrect initial contents of s2: %d\n", contents)
}
s2.ZeroContents()
contents = s2.GetData()
if contents != 0 {
t.Fatalf("Incorrect value of s2 after zeroing: %d\n", contents)
}
s2.Set(1234)
contents = s2.GetData()
if contents != 1234 {
t.Fatalf("Incorrect value of s2: %d (expected 1234)\n", contents)
}
}
// See the comment in generate_network_big_compute.py for information about
// the inputs and outputs used for testing or benchmarking session options.
func prepareBenchmarkTensors(t testing.TB, seed int64) (*Tensor[float32],
*Tensor[float32]) {
vectorLength := int64(1024 * 1024 * 50)
inputData := make([]float32, vectorLength)
rng := rand.New(rand.NewSource(seed))
for i := range inputData {
inputData[i] = rng.Float32()
}
input, e := NewTensor(NewShape(1, vectorLength), inputData)
if e != nil {
t.Fatalf("Error creating input tensor: %s\n", e)
}
output, e := NewEmptyTensor[float32](NewShape(1, vectorLength))
if e != nil {
input.Destroy()
t.Fatalf("Error creating output tensor: %s\n", e)
}
return input, output
}
// Used mostly when testing different execution providers. Runs the
// example_big_compute.onnx network on a session created with the given
// options. May fail or skip the test on error. The runtime must have already
// been initialized when calling this.
func testBigSessionWithOptions(t *testing.T, options *SessionOptions) {
input, output := prepareBenchmarkTensors(t, 1337)
defer input.Destroy()
defer output.Destroy()
session, e := NewAdvancedSession("test_data/example_big_compute.onnx",
[]string{"Input"}, []string{"Output"},
[]Value{input}, []Value{output}, options)
if e != nil {
t.Fatalf("Error creating session: %s\n", e)
}
defer session.Destroy()
e = session.Run()
if e != nil {
t.Fatalf("Error running the session: %s\n", e)
}
}
// Used when benchmarking different execution providers. Otherwise, basically
// identical in usage to testBigSessionWithOptions.
func benchmarkBigSessionWithOptions(b *testing.B, options *SessionOptions) {
// It's also OK for the caller to have already stopped the timer, but we'll
// make sure it's stopped here.
b.StopTimer()
input, output := prepareBenchmarkTensors(b, benchmarkRNGSeed)
defer input.Destroy()
defer output.Destroy()
session, e := NewAdvancedSession("test_data/example_big_compute.onnx",
[]string{"Input"}, []string{"Output"},
[]Value{input}, []Value{output}, options)
if e != nil {
b.Fatalf("Error creating session: %s\n", e)
}
defer session.Destroy()
b.StartTimer()
for n := 0; n < b.N; n++ {
e = session.Run()
if e != nil {
b.Fatalf("Error running iteration %d/%d: %s\n", n+1, b.N, e)
}
}
}
func TestSessionOptions(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
options, e := NewSessionOptions()
if e != nil {
t.Fatalf("Error creating session options: %s\n", e)
}
defer options.Destroy()
e = options.SetIntraOpNumThreads(3)
if e != nil {
t.Fatalf("Error setting intra-op num threads: %s\n", e)
}
e = options.SetInterOpNumThreads(1)
if e != nil {
t.Fatalf("Error setting inter-op num threads: %s\n", e)
}
e = options.SetCpuMemArena(true)
if e != nil {
t.Fatalf("Error setting CPU memory arena: %s\n", e)
}
e = options.SetMemPattern(true)
if e != nil {
t.Fatalf("Error setting memory pattern: %s\n", e)
}
testBigSessionWithOptions(t, options)
}
// Very similar to TestSessionOptions, but structured as a benchmark.
func runNumThreadsBenchmark(b *testing.B, nThreads int) {
// Don't run the benchmark timer when doing initialization.
b.StopTimer()
InitializeRuntime(b)
defer CleanupRuntime(b)
options, e := NewSessionOptions()
if e != nil {
b.Fatalf("Error creating options: %s\n", e)
}
defer options.Destroy()
e = options.SetIntraOpNumThreads(nThreads)
if e != nil {
b.Fatalf("Error setting intra-op threads to %d: %s\n", nThreads, e)
}
e = options.SetInterOpNumThreads(nThreads)
if e != nil {
b.Fatalf("Error setting inter-op threads to %d: %s\n", nThreads, e)
}
benchmarkBigSessionWithOptions(b, options)
}
func BenchmarkOpSingleThreaded(b *testing.B) {
runNumThreadsBenchmark(b, 1)
}
func BenchmarkOpMultiThreaded(b *testing.B) {
runNumThreadsBenchmark(b, 0)
}
// Creates a SessionOptions struct that's configured to enable CUDA. Skips the
// test if CUDA isn't supported. If some other error occurs, this will fail the
// test instead. There may be other possible places for failures to occur due
// to CUDA not being supported, or incorrectly configured, but this at least
// checks for the ones I've encountered on my system.
func getCUDASessionOptions(t testing.TB) *SessionOptions {
// First, create the CUDA options
cudaOptions, e := NewCUDAProviderOptions()
if e != nil {
// This is where things seem to fail if the onnxruntime library version
// doesn't support CUDA.
t.Skipf("Error creating CUDA provider options: %s. "+
"Your version of the onnxruntime library may not support CUDA. "+
"Skipping the remainder of this test.\n", e)
}
defer cudaOptions.Destroy()
e = cudaOptions.Update(map[string]string{"device_id": "0"})
if e != nil {
// This is where things seem to fail if the system doesn't support CUDA
// or if CUDA is misconfigured somehow (i.e. a wrong version that isn't
// supported by onnxruntime, libraries not being located correctly,
// etc.)
t.Skipf("Error updating CUDA options to use device ID 0: %s. "+
"Your system may not support CUDA, or CUDA may be misconfigured "+
"or a version incompatible with this version of onnxruntime. "+
"Skipping the remainder of this test.\n", e)
}
// Next, provide the CUDA options to the sesison options
sessionOptions, e := NewSessionOptions()
if e != nil {
t.Fatalf("Error creating SessionOptions: %s\n", e)
}
e = sessionOptions.AppendExecutionProviderCUDA(cudaOptions)
if e != nil {
sessionOptions.Destroy()
t.Fatalf("Error setting CUDA execution provider options: %s\n", e)
}
return sessionOptions
}
func TestCUDASession(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
sessionOptions := getCUDASessionOptions(t)
defer sessionOptions.Destroy()
testBigSessionWithOptions(t, sessionOptions)
}
func BenchmarkCUDASession(b *testing.B) {
b.StopTimer()
InitializeRuntime(b)
defer CleanupRuntime(b)
sessionOptions := getCUDASessionOptions(b)
defer sessionOptions.Destroy()
benchmarkBigSessionWithOptions(b, sessionOptions)
}
// Creates a SessionOptions struct that's configured to enable TensorRT.
// Basically the same as getCUDASessionOptions; see the comments there.
func getTensorRTSessionOptions(t testing.TB) *SessionOptions {
trtOptions, e := NewTensorRTProviderOptions()
if e != nil {
t.Skipf("Error creating TensorRT provider options; %s. "+
"Your version of the onnxruntime library may not include "+
"TensorRT support. Skipping the remainder of this test.\n", e)
}
defer trtOptions.Destroy()
// Arbitrarily update an option to test trtOptions.Update()
e = trtOptions.Update(
map[string]string{"trt_max_partition_iterations": "60"})
if e != nil {
t.Skipf("Error updating TensorRT options: %s. Your system may not "+
"support TensorRT, TensorRT may be misconfigured, or it may be "+
"incompatible with this build of onnxruntime. Skipping the "+
"remainder of this test.\n", e)
}
sessionOptions, e := NewSessionOptions()
if e != nil {
t.Fatalf("Error creating SessionOptions: %s\n", e)
}
e = sessionOptions.AppendExecutionProviderTensorRT(trtOptions)
if e != nil {
sessionOptions.Destroy()
t.Fatalf("Error setting TensorRT execution provider: %s\n", e)
}
return sessionOptions
}
func TestTensorRTSession(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
sessionOptions := getTensorRTSessionOptions(t)
defer sessionOptions.Destroy()
testBigSessionWithOptions(t, sessionOptions)
}
func BenchmarkTensorRTSession(b *testing.B) {
b.StopTimer()
InitializeRuntime(b)
defer CleanupRuntime(b)
sessionOptions := getTensorRTSessionOptions(b)
defer sessionOptions.Destroy()
benchmarkBigSessionWithOptions(b, sessionOptions)
}
func getCoreMLSessionOptions(t testing.TB) *SessionOptions {
options, e := NewSessionOptions()
if e != nil {
t.Fatalf("Error creating session options: %s\n", e)
}
e = options.AppendExecutionProviderCoreML(0)
if e != nil {
options.Destroy()
t.Skipf("Couldn't enable CoreML: %s. This may be due to your system "+
"or onnxruntime library version not supporting CoreML.\n", e)
}
return options
}
func TestCoreMLSession(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
sessionOptions := getCoreMLSessionOptions(t)
defer sessionOptions.Destroy()
testBigSessionWithOptions(t, sessionOptions)
}
func BenchmarkCoreMLSession(b *testing.B) {
b.StopTimer()
InitializeRuntime(b)
defer CleanupRuntime(b)
sessionOptions := getCoreMLSessionOptions(b)
defer sessionOptions.Destroy()
benchmarkBigSessionWithOptions(b, sessionOptions)
}
func getDirectMLSessionOptions(t testing.TB) *SessionOptions {
options, e := NewSessionOptions()
if e != nil {
t.Fatalf("Error creating session options: %s\n", e)
}
e = options.AppendExecutionProviderDirectML(0)
if e != nil {
options.Destroy()
t.Skipf("Couldn't enable DirectML: %s. This may be due to your "+
"system or onnxruntime library version not supporting DirectML.\n",
e)
}
return options
}
func TestDirectMLSession(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
sessionOptions := getDirectMLSessionOptions(t)
defer sessionOptions.Destroy()
testBigSessionWithOptions(t, sessionOptions)
}
func BenchmarkDirectMLSession(b *testing.B) {
b.StopTimer()
InitializeRuntime(b)
defer CleanupRuntime(b)
sessionOptions := getDirectMLSessionOptions(b)
defer sessionOptions.Destroy()
benchmarkBigSessionWithOptions(b, sessionOptions)
}
func getOpenVINOSessionOptions(t testing.TB) *SessionOptions {
options, e := NewSessionOptions()
if e != nil {
t.Fatalf("Error creating session options: %s\n", e)
}
e = options.AppendExecutionProviderOpenVINO(map[string]string{})
if e != nil {
options.Destroy()
t.Skipf("Couldn't enable OpenVINO: %s. This may be due to your "+
"system or onnxruntime library version not supporting OpenVINO.\n",
e)
}
return options
}
func TestOpenVINOSession(t *testing.T) {
InitializeRuntime(t)
defer CleanupRuntime(t)
sessionOptions := getOpenVINOSessionOptions(t)
defer sessionOptions.Destroy()
testBigSessionWithOptions(t, sessionOptions)
}
func BenchmarkOpenVINOSession(b *testing.B) {
b.StopTimer()
InitializeRuntime(b)
defer CleanupRuntime(b)
sessionOptions := getOpenVINOSessionOptions(b)
defer sessionOptions.Destroy()
benchmarkBigSessionWithOptions(b, sessionOptions)
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。