代码拉取完成,页面将自动刷新
from synthesizer.preprocess import create_embeddings
from utils.argutils import print_args
from pathlib import Path
import argparse
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Creates embeddings for the synthesizer from the LibriSpeech utterances.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("synthesizer_root", type=Path, help=\
"Path to the synthesizer training data that contains the audios and the train.txt file. "
"If you let everything as default, it should be <datasets_root>/SV2TTS/synthesizer/.")
parser.add_argument("-e", "--encoder_model_fpath", type=Path,
default="saved_models/default/encoder.pt", help=\
"Path your trained encoder model.")
parser.add_argument("-n", "--n_processes", type=int, default=4, help= \
"Number of parallel processes. An encoder is created for each, so you may need to lower "
"this value on GPUs with low memory. Set it to 1 if CUDA is unhappy.")
args = parser.parse_args()
# Preprocess the dataset
print_args(args, parser)
create_embeddings(**vars(args))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。