1 Star 0 Fork 0

Nsood/acorn_eeprom_driver

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
acorn_eeprom.c 25.18 KB
一键复制 编辑 原始数据 按行查看 历史
jli 提交于 2016-05-09 10:45 . first commit for acorn_eeprom.c
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979
/*
*base on at24.c - handle ACORN I2C EEPROMs
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/sysfs.h>
#include <linux/mod_devicetable.h>
#include <linux/log2.h>
#include <linux/bitops.h>
#include <linux/jiffies.h>
#include <linux/of.h>
#include <linux/i2c.h>
#include <linux/i2c/at24.h>
#include <linux/of_memory_accessor.h>
struct at24_data {
struct at24_platform_data chip;
struct memory_accessor macc;
int use_smbus;
/*
* Lock protects against activities from other Linux tasks,
* but not from changes by other I2C masters.
*/
struct mutex lock;
struct bin_attribute bin;
u8 *writebuf;
unsigned write_max;
unsigned num_addresses;
/*
* Some chips tie up multiple I2C addresses; dummy devices reserve
* them for us, and we'll use them with SMBus calls.
*/
struct i2c_client *client[];
};
struct acorn_tlv{
uint16_t type;
uint16_t length;
};
/* define company id, it will be filled in higher 8 bits in tlv type */
#define ACORN_COMPANY_ID 0xac
/* define ACORN eeprom tlv type */
enum acorn_eeprom_type{
ACORN_SERIAL_NUM, /* product serial number */
ACORN_MGMT_MAC, /* management port MAC address */
ACORN_ETH0_MAC, /* ETH0(data port 0) MAC address */
ACORN_PCB_VER, /* PCB version */
ACORN_PD, /* Production Date */
ACORN_MADEIN, /* Made In */
ACORN_PRODUCT_TYPE,
ACORN_PCBA_SN,
ACORN_BOOTFILE,
ACORN_EEPROM_TYPE_MAX,
};
/* define the length of each item in eeprom */
#define ACORN_TLV_SIZE 4
#define ACORN_SERIAL_NUM_LEN 32
#define ACORN_MAC_LEN 6
#define ACORN_PCB_VER_LEN 4
#define ACORN_PRODUCTION_DATE_LEN 16
#define ACORN_MADEIN_LEN 10
#define ACORN_PRODUCT_TYPE_LEN 10
#define ACORN_PCBA_SN_LEN 14
#define ACORN_BOOTFILE_LEN 60
#define ACORN_EPROM_TYPE_STR_MAX 0x10
#define ACORN_SERIAL_NUM_OFFSET 0
#define ACORN_MGMT_MAC_OFFSET ACORN_SERIAL_NUM_OFFSET+ACORN_TLV_SIZE+ACORN_SERIAL_NUM_LEN
#define ACORN_ETH0_MAC_OFFSET ACORN_MGMT_MAC_OFFSET+ACORN_TLV_SIZE+ACORN_MAC_LEN
#define ACORN_PCB_VER_OFFSET ACORN_ETH0_MAC_OFFSET+ACORN_TLV_SIZE+ACORN_MAC_LEN
#define ACORN_PRODUCTION_DATE_OFFSET ACORN_PCB_VER_OFFSET+ACORN_TLV_SIZE+ACORN_PCB_VER_LEN
#define ACORN_MADEIN_OFFSET ACORN_PRODUCTION_DATE_OFFSET+ACORN_TLV_SIZE+ACORN_PRODUCTION_DATE_LEN
#define ACORN_PRODUCT_TYPE_OFFSET ACORN_MADEIN_OFFSET+ACORN_TLV_SIZE+ACORN_MADEIN_LEN
#define ACORN_PCBA_SN_OFFSET ACORN_PRODUCT_TYPE_OFFSET+ACORN_TLV_SIZE+ACORN_PRODUCT_TYPE_LEN
#define ACORN_BOOTFILE_OFFSET ACORN_PCBA_SN_OFFSET+ACORN_TLV_SIZE+ACORN_PCBA_SN_LEN
static int acorn_eeprom_type2off[ACORN_EEPROM_TYPE_MAX] = {
[ACORN_SERIAL_NUM] = ACORN_SERIAL_NUM_OFFSET,
[ACORN_MGMT_MAC] = ACORN_MGMT_MAC_OFFSET,
[ACORN_ETH0_MAC] = ACORN_ETH0_MAC_OFFSET,
[ACORN_PCB_VER] = ACORN_PCB_VER_OFFSET,
[ACORN_PD] = ACORN_PRODUCTION_DATE_OFFSET,
[ACORN_MADEIN] = ACORN_MADEIN_OFFSET,
[ACORN_PRODUCT_TYPE] = ACORN_PRODUCT_TYPE_OFFSET,
[ACORN_PCBA_SN] = ACORN_PCBA_SN_OFFSET,
[ACORN_BOOTFILE] = ACORN_BOOTFILE_OFFSET,
};
static int acorn_eeprom_type2len[ACORN_EEPROM_TYPE_MAX] = {
[ACORN_SERIAL_NUM] = ACORN_SERIAL_NUM_LEN,
[ACORN_MGMT_MAC] = ACORN_MAC_LEN,
[ACORN_ETH0_MAC] = ACORN_MAC_LEN,
[ACORN_PCB_VER] = ACORN_PCB_VER_LEN,
[ACORN_PD] = ACORN_PRODUCTION_DATE_LEN,
[ACORN_MADEIN] = ACORN_MADEIN_LEN,
[ACORN_PRODUCT_TYPE] = ACORN_PRODUCT_TYPE_LEN,
[ACORN_PCBA_SN] = ACORN_PCBA_SN_LEN,
[ACORN_BOOTFILE] = ACORN_BOOTFILE_LEN,
};
static char acorn_eeprom_type2str[ACORN_EEPROM_TYPE_MAX][ACORN_EPROM_TYPE_STR_MAX] = {
[ACORN_SERIAL_NUM] = "serialnum",
[ACORN_MGMT_MAC] = "mgmtmac",
[ACORN_ETH0_MAC] = "eth0mac",
[ACORN_PCB_VER] = "pcbver",
[ACORN_PD] = "prodate",
[ACORN_MADEIN] = "madein",
[ACORN_PRODUCT_TYPE] = "protype",
[ACORN_PCBA_SN] = "pcbasn",
[ACORN_BOOTFILE] = "bootfile"
};
/*
* This parameter is to help this driver avoid blocking other drivers out
* of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
* clock, one 256 byte read takes about 1/43 second which is excessive;
* but the 1/170 second it takes at 400 kHz may be quite reasonable; and
* at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
*
* This value is forced to be a power of two so that writes align on pages.
*/
static unsigned io_limit = 128;
module_param(io_limit, uint, 0);
MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
/*
* Specs often allow 5 msec for a page write, sometimes 20 msec;
* it's important to recover from write timeouts.
*/
static unsigned write_timeout = 25;
module_param(write_timeout, uint, 0);
MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
#define AT24_SIZE_BYTELEN 5
#define AT24_SIZE_FLAGS 8
#define AT24_BITMASK(x) (BIT(x) - 1)
/* create non-zero magic value for given eeprom parameters */
#define AT24_DEVICE_MAGIC(_len, _flags) \
((1 << AT24_SIZE_FLAGS | (_flags)) \
<< AT24_SIZE_BYTELEN | ilog2(_len))
static const struct i2c_device_id acorn_eeprom_ids[] = {
{ "acorn-eeprom", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
{ /* END OF LIST */ }
};
MODULE_DEVICE_TABLE(i2c, acorn_eeprom_ids);
/*-------------------------------------------------------------------------*/
/*
* This routine supports chips which consume multiple I2C addresses. It
* computes the addressing information to be used for a given r/w request.
* Assumes that sanity checks for offset happened at sysfs-layer.
*/
static struct i2c_client *at24_translate_offset(struct at24_data *at24,
unsigned *offset)
{
unsigned i;
if (at24->chip.flags & AT24_FLAG_ADDR16) {
i = *offset >> 16;
*offset &= 0xffff;
} else {
i = *offset >> 8;
*offset &= 0xff;
}
return at24->client[i];
}
static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
unsigned offset, size_t count)
{
struct i2c_msg msg[2];
u8 msgbuf[2];
struct i2c_client *client;
unsigned long timeout, read_time;
int status, i;
memset(msg, 0, sizeof(msg));
/*
* REVISIT some multi-address chips don't rollover page reads to
* the next slave address, so we may need to truncate the count.
* Those chips might need another quirk flag.
*
* If the real hardware used four adjacent 24c02 chips and that
* were misconfigured as one 24c08, that would be a similar effect:
* one "eeprom" file not four, but larger reads would fail when
* they crossed certain pages.
*/
/*
* Slave address and byte offset derive from the offset. Always
* set the byte address; on a multi-master board, another master
* may have changed the chip's "current" address pointer.
*/
client = at24_translate_offset(at24, &offset);
if (count > io_limit)
count = io_limit;
switch (at24->use_smbus) {
case I2C_SMBUS_I2C_BLOCK_DATA:
/* Smaller eeproms can work given some SMBus extension calls */
if (count > I2C_SMBUS_BLOCK_MAX)
count = I2C_SMBUS_BLOCK_MAX;
break;
case I2C_SMBUS_WORD_DATA:
count = 2;
break;
case I2C_SMBUS_BYTE_DATA:
count = 1;
break;
default:
/*
* When we have a better choice than SMBus calls, use a
* combined I2C message. Write address; then read up to
* io_limit data bytes. Note that read page rollover helps us
* here (unlike writes). msgbuf is u8 and will cast to our
* needs.
*/
i = 0;
if (at24->chip.flags & AT24_FLAG_ADDR16)
msgbuf[i++] = offset >> 8;
msgbuf[i++] = offset;
msg[0].addr = client->addr;
msg[0].buf = msgbuf;
msg[0].len = i;
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].buf = buf;
msg[1].len = count;
}
/*
* Reads fail if the previous write didn't complete yet. We may
* loop a few times until this one succeeds, waiting at least
* long enough for one entire page write to work.
*/
timeout = jiffies + msecs_to_jiffies(write_timeout);
do {
read_time = jiffies;
switch (at24->use_smbus) {
case I2C_SMBUS_I2C_BLOCK_DATA:
status = i2c_smbus_read_i2c_block_data(client, offset,
count, buf);
break;
case I2C_SMBUS_WORD_DATA:
status = i2c_smbus_read_word_data(client, offset);
if (status >= 0) {
buf[0] = status & 0xff;
buf[1] = status >> 8;
status = count;
}
break;
case I2C_SMBUS_BYTE_DATA:
status = i2c_smbus_read_byte_data(client, offset);
if (status >= 0) {
buf[0] = status;
status = count;
}
break;
default:
status = i2c_transfer(client->adapter, msg, 2);
if (status == 2)
status = count;
}
dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
count, offset, status, jiffies);
if (status == count)
return count;
/* REVISIT: at HZ=100, this is sloooow */
msleep(1);
} while (time_before(read_time, timeout));
return -ETIMEDOUT;
}
static ssize_t at24_read(struct at24_data *at24,
char *buf, loff_t off, size_t count)
{
ssize_t retval = 0;
if (unlikely(!count))
return count;
/*
* Read data from chip, protecting against concurrent updates
* from this host, but not from other I2C masters.
*/
mutex_lock(&at24->lock);
while (count) {
ssize_t status;
status = at24_eeprom_read(at24, buf, off, count);
if (status <= 0) {
if (retval == 0)
retval = status;
break;
}
buf += status;
off += status;
count -= status;
retval += status;
}
mutex_unlock(&at24->lock);
return retval;
}
static ssize_t at24_bin_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off, size_t count)
{
struct at24_data *at24;
at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
return at24_read(at24, buf, off, count);
}
/*
* Note that if the hardware write-protect pin is pulled high, the whole
* chip is normally write protected. But there are plenty of product
* variants here, including OTP fuses and partial chip protect.
*
* We only use page mode writes; the alternative is sloooow. This routine
* writes at most one page.
*/
static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
unsigned offset, size_t count)
{
struct i2c_client *client;
struct i2c_msg msg;
ssize_t status;
unsigned long timeout, write_time;
unsigned next_page;
/* Get corresponding I2C address and adjust offset */
client = at24_translate_offset(at24, &offset);
/* write_max is at most a page */
if (count > at24->write_max)
count = at24->write_max;
/* Never roll over backwards, to the start of this page */
next_page = roundup(offset + 1, at24->chip.page_size);
if (offset + count > next_page)
count = next_page - offset;
/* If we'll use I2C calls for I/O, set up the message */
if (!at24->use_smbus) {
int i = 0;
msg.addr = client->addr;
msg.flags = 0;
/* msg.buf is u8 and casts will mask the values */
msg.buf = at24->writebuf;
if (at24->chip.flags & AT24_FLAG_ADDR16)
msg.buf[i++] = offset >> 8;
msg.buf[i++] = offset;
memcpy(&msg.buf[i], buf, count);
msg.len = i + count;
}
/*
* Writes fail if the previous one didn't complete yet. We may
* loop a few times until this one succeeds, waiting at least
* long enough for one entire page write to work.
*/
timeout = jiffies + msecs_to_jiffies(write_timeout);
do {
write_time = jiffies;
if (at24->use_smbus) {
status = i2c_smbus_write_i2c_block_data(client,
offset, count, buf);
if (status == 0)
status = count;
} else {
status = i2c_transfer(client->adapter, &msg, 1);
if (status == 1)
status = count;
}
dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
count, offset, status, jiffies);
if (status == count)
return count;
/* REVISIT: at HZ=100, this is sloooow */
msleep(1);
} while (time_before(write_time, timeout));
return -ETIMEDOUT;
}
static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
size_t count)
{
ssize_t retval = 0;
if (unlikely(!count))
return count;
/*
* Write data to chip, protecting against concurrent updates
* from this host, but not from other I2C masters.
*/
mutex_lock(&at24->lock);
while (count) {
ssize_t status;
status = at24_eeprom_write(at24, buf, off, count);
if (status <= 0) {
if (retval == 0)
retval = status;
break;
}
buf += status;
off += status;
count -= status;
retval += status;
}
mutex_unlock(&at24->lock);
return retval;
}
static ssize_t at24_bin_write(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off, size_t count)
{
struct at24_data *at24;
at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
return at24_write(at24, buf, off, count);
}
/*-------------------------------------------------------------------------*/
/*
* This lets other kernel code access the eeprom data. For example, it
* might hold a board's Ethernet address, or board-specific calibration
* data generated on the manufacturing floor.
*/
static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf,
off_t offset, size_t count)
{
struct at24_data *at24 = container_of(macc, struct at24_data, macc);
return at24_read(at24, buf, offset, count);
}
static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf,
off_t offset, size_t count)
{
struct at24_data *at24 = container_of(macc, struct at24_data, macc);
return at24_write(at24, buf, offset, count);
}
static size_t show_eeprom_data(struct device *dev, int type, char *buf)
{
int i=0;
int len=acorn_eeprom_type2len[type];
char tmp_buf[50]={'\0'};
struct at24_data *at24;
at24 = dev_get_drvdata(dev);
at24_read(at24, tmp_buf, acorn_eeprom_type2off[type]+ACORN_TLV_SIZE, len);
for(i=0; i<len; i++) {
if(tmp_buf[i]=='\n')
break;
}
strncpy(buf, tmp_buf, i);
return i;
}
static size_t store_eeprom_data(struct device *dev,
int type,const char *buf,size_t count)
{
int ret=0;
int len = acorn_eeprom_type2len[type];
char *tmp_buffer;
struct at24_data *at24;
if (count > len)
count = len;
tmp_buffer = kmalloc(sizeof(struct acorn_tlv) + len,0);
((struct acorn_tlv*)tmp_buffer)->type = (ACORN_COMPANY_ID << 8) + type;
((struct acorn_tlv*)tmp_buffer)->length = len;
memcpy((struct acorn_tlv*)tmp_buffer + 1, buf, count);
at24 = dev_get_drvdata(dev);
printk("store serial num:%s",buf);
ret = at24_write(at24, (char *)tmp_buffer, acorn_eeprom_type2off[type], count+ACORN_TLV_SIZE);
kfree(tmp_buffer);
return ret;
}
static ssize_t show_serialnum(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret=0;
ret = show_eeprom_data(dev,ACORN_SERIAL_NUM,buf);
return ret;
}
static ssize_t store_serialnum(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int ret=0;
ret = store_eeprom_data(dev,ACORN_SERIAL_NUM,buf,count);
//printk("D:ret=%d,count=%d",ret,count);
//normally count + sizeof(tlv) == ret
//here must return the num bytes of input
//or it would print "sh: write error: Bad address"
return count;
}
static ssize_t show_mgmtmac(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret=0;
ret = show_eeprom_data(dev,ACORN_MGMT_MAC,buf);
return ret;
}
static ssize_t store_mgmtmac(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int ret=0;
ret = store_eeprom_data(dev,ACORN_MGMT_MAC,buf,count);
return count;
}
static ssize_t show_eth0mac(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret=0;
ret = show_eeprom_data(dev,ACORN_ETH0_MAC,buf);
return ret;
}
static ssize_t store_eth0mac(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int ret=0;
ret = store_eeprom_data(dev,ACORN_ETH0_MAC,buf,count);
return count;
}
static ssize_t show_pcbver(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret=0;
ret = show_eeprom_data(dev,ACORN_PCB_VER,buf);
return ret;
}
static ssize_t store_pcbver(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int ret=0;
ret = store_eeprom_data(dev,ACORN_PCB_VER,buf,count);
return count;
}
static ssize_t show_prodate(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret=0;
ret = show_eeprom_data(dev,ACORN_PD,buf);
return ret;
}
static ssize_t store_prodate(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int ret=0;
ret = store_eeprom_data(dev,ACORN_PD,buf,count);
return count;
}
static ssize_t show_madein(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret=0;
ret = show_eeprom_data(dev,ACORN_MADEIN,buf);
return ret;
}
static ssize_t store_madein(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int ret=0;
ret = store_eeprom_data(dev,ACORN_MADEIN,buf,count);
return count;
}
static ssize_t show_protype(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret=0;
ret = show_eeprom_data(dev,ACORN_PRODUCT_TYPE,buf);
return ret;
}
static ssize_t store_protype(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int ret=0;
ret = store_eeprom_data(dev,ACORN_PRODUCT_TYPE,buf,count);
return count;
}
static ssize_t show_pcbasn(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret=0;
ret = show_eeprom_data(dev,ACORN_PCBA_SN,buf);
return ret;
}
static ssize_t store_pcbasn(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int ret=0;
ret = store_eeprom_data(dev,ACORN_PCBA_SN,buf,count);
return count;
}
static ssize_t show_bootfile(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret=0;
ret = show_eeprom_data(dev,ACORN_BOOTFILE,buf);
return ret;
}
static ssize_t store_bootfile(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int ret=0;
ret = store_eeprom_data(dev,ACORN_BOOTFILE,buf,count);
return count;
}
static DEVICE_ATTR(serialnum, 0644, show_serialnum, store_serialnum);
static DEVICE_ATTR(mgmtmac, 0644, show_mgmtmac, store_mgmtmac);
static DEVICE_ATTR(eth0mac, 0644, show_eth0mac, store_eth0mac);
static DEVICE_ATTR(pcbver, 0644, show_pcbver, store_pcbver);
static DEVICE_ATTR(prodate, 0644, show_prodate, store_prodate);
static DEVICE_ATTR(madein, 0644, show_madein, store_madein);
static DEVICE_ATTR(protype, 0644, show_protype, store_protype);
static DEVICE_ATTR(pcbasn, 0644, show_pcbasn, store_pcbasn);
static DEVICE_ATTR(bootfile, 0644, show_bootfile, store_bootfile);
static const struct attribute *eeprom_attrs[] = {
&dev_attr_serialnum.attr,
&dev_attr_mgmtmac.attr,
&dev_attr_eth0mac.attr,
&dev_attr_pcbver.attr,
&dev_attr_prodate.attr,
&dev_attr_madein.attr,
&dev_attr_protype.attr,
&dev_attr_pcbasn.attr,
&dev_attr_bootfile.attr,
NULL,
};
struct attribute_group eeprom_attribute_group={
.attrs = (struct attribute **) eeprom_attrs,
};
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_OF
static void at24_get_ofdata(struct i2c_client *client,
struct at24_platform_data *chip)
{
const __be32 *val;
struct device_node *node = client->dev.of_node;
if (node) {
if (of_get_property(node, "read-only", NULL))
chip->flags |= AT24_FLAG_READONLY;
val = of_get_property(node, "pagesize", NULL);
if (val)
chip->page_size = be32_to_cpup(val);
}
}
#else
static void at24_get_ofdata(struct i2c_client *client,
struct at24_platform_data *chip)
{ }
#endif /* CONFIG_OF */
static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
struct at24_platform_data chip;
bool writable;
int use_smbus = 0;
struct at24_data *at24;
int err;
unsigned i, num_addresses;
kernel_ulong_t magic;
if (client->dev.platform_data) {
chip = *(struct at24_platform_data *)client->dev.platform_data;
} else {
if (!id->driver_data) {
err = -ENODEV;
goto err_out;
}
magic = id->driver_data;
chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
magic >>= AT24_SIZE_BYTELEN;
chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
/*
* This is slow, but we can't know all eeproms, so we better
* play safe. Specifying custom eeprom-types via platform_data
* is recommended anyhow.
*/
chip.page_size = 1;
/* update chipdata if OF is present */
at24_get_ofdata(client, &chip);
chip.setup = NULL;
chip.context = NULL;
}
if (!is_power_of_2(chip.byte_len))
dev_warn(&client->dev,
"byte_len looks suspicious (no power of 2)!\n");
if (!chip.page_size) {
dev_err(&client->dev, "page_size must not be 0!\n");
err = -EINVAL;
goto err_out;
}
if (!is_power_of_2(chip.page_size))
dev_warn(&client->dev,
"page_size looks suspicious (no power of 2)!\n");
/* Use I2C operations unless we're stuck with SMBus extensions. */
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
if (chip.flags & AT24_FLAG_ADDR16) {
err = -EPFNOSUPPORT;
goto err_out;
}
if (i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
} else if (i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_READ_WORD_DATA)) {
use_smbus = I2C_SMBUS_WORD_DATA;
} else if (i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
use_smbus = I2C_SMBUS_BYTE_DATA;
} else {
err = -EPFNOSUPPORT;
goto err_out;
}
}
if (chip.flags & AT24_FLAG_TAKE8ADDR)
num_addresses = 8;
else
num_addresses = DIV_ROUND_UP(chip.byte_len,
(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
at24 = kzalloc(sizeof(struct at24_data) +
num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
if (!at24) {
err = -ENOMEM;
goto err_out;
}
mutex_init(&at24->lock);
at24->use_smbus = use_smbus;
at24->chip = chip;
at24->num_addresses = num_addresses;
/*
* Export the EEPROM bytes through sysfs, since that's convenient.
* By default, only root should see the data (maybe passwords etc)
*/
sysfs_bin_attr_init(&at24->bin);
at24->bin.attr.name = "eeprom";
at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR;
at24->bin.read = at24_bin_read;
at24->bin.size = chip.byte_len;
at24->macc.read = at24_macc_read;
writable = !(chip.flags & AT24_FLAG_READONLY);
if (writable) {
if (!use_smbus || i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
unsigned write_max = chip.page_size;
at24->macc.write = at24_macc_write;
at24->bin.write = at24_bin_write;
at24->bin.attr.mode |= S_IWUSR;
if (write_max > io_limit)
write_max = io_limit;
if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
write_max = I2C_SMBUS_BLOCK_MAX;
at24->write_max = write_max;
/* buffer (data + address at the beginning) */
at24->writebuf = kmalloc(write_max + 2, GFP_KERNEL);
if (!at24->writebuf) {
err = -ENOMEM;
goto err_struct;
}
} else {
dev_warn(&client->dev,
"cannot write due to controller restrictions.");
}
}
at24->client[0] = client;
/* use dummy devices for multiple-address chips */
for (i = 1; i < num_addresses; i++) {
at24->client[i] = i2c_new_dummy(client->adapter,
client->addr + i);
if (!at24->client[i]) {
dev_err(&client->dev, "address 0x%02x unavailable\n",
client->addr + i);
err = -EADDRINUSE;
goto err_clients;
}
}
err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin);
if (err)
goto err_clients;
i2c_set_clientdata(client, at24);
err = sysfs_create_group(&client->dev.kobj, &eeprom_attribute_group);
if (err < 0)
goto err_group;
dev_info(&client->dev, "%zu byte %s EEPROM, %s, %u bytes/write\n",
at24->bin.size, client->name,
writable ? "writable" : "read-only", at24->write_max);
if (use_smbus == I2C_SMBUS_WORD_DATA ||
use_smbus == I2C_SMBUS_BYTE_DATA) {
dev_notice(&client->dev, "Falling back to %s reads, "
"performance will suffer\n", use_smbus ==
I2C_SMBUS_WORD_DATA ? "word" : "byte");
}
/* export data to kernel code */
if (chip.setup)
chip.setup(&at24->macc, chip.context);
if (client->dev.of_node)
of_memory_accessor_register(&client->dev, &at24->macc);
return 0;
err_group:
sysfs_remove_group(&client->dev.kobj, &eeprom_attribute_group);
err_clients:
for (i = 1; i < num_addresses; i++)
if (at24->client[i])
i2c_unregister_device(at24->client[i]);
kfree(at24->writebuf);
err_struct:
kfree(at24);
err_out:
dev_dbg(&client->dev, "probe error %d\n", err);
return err;
}
static int at24_remove(struct i2c_client *client)
{
struct at24_data *at24;
int i;
at24 = i2c_get_clientdata(client);
sysfs_remove_bin_file(&client->dev.kobj, &at24->bin);
sysfs_remove_group(&client->dev.kobj, &eeprom_attribute_group);
if (client->dev.of_node)
of_memory_accessor_remove(&client->dev);
for (i = 1; i < at24->num_addresses; i++)
i2c_unregister_device(at24->client[i]);
kfree(at24->writebuf);
kfree(at24);
return 0;
}
/*-------------------------------------------------------------------------*/
static struct i2c_driver acorn_eeprom_driver = {
.driver = {
.name = "acorn_eeprom",
.owner = THIS_MODULE,
},
.probe = at24_probe,
.remove = at24_remove,
.id_table = acorn_eeprom_ids,
};
static int __init at24_init(void)
{
if (!io_limit) {
pr_err("at24: io_limit must not be 0!\n");
return -EINVAL;
}
io_limit = rounddown_pow_of_two(io_limit);
return i2c_add_driver(&acorn_eeprom_driver);
}
module_init(at24_init);
static void __exit at24_exit(void)
{
i2c_del_driver(&acorn_eeprom_driver);
}
module_exit(at24_exit);
MODULE_DESCRIPTION("kev-u1600 eeprom driver");
MODULE_AUTHOR("Li Jian<jli@acorn-net.com>");
MODULE_LICENSE("GPL");
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
C
1
https://gitee.com/nsood/acorn_eeprom_driver.git
git@gitee.com:nsood/acorn_eeprom_driver.git
nsood
acorn_eeprom_driver
acorn_eeprom_driver
master

搜索帮助