代码拉取完成,页面将自动刷新
同步操作将从 xu_hany/OpenCV-Flask 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
'''
author(s): xujing from Medcare
date: 2019-03-20
flask调用opencv并基于yolo-lite做目标检测。
解决了:
在html中嵌入opencv视频流
opencv putText的中文显示
darknet调用yolo-lite
多线程,多点同时访问
ajax异步更新echarts的json数据,实时绘制识别结果!
问题: yolo-lite在no-GPU下的识别FPS没有做到paper中说的那么高!
'''
from flask import Response
from flask import Flask
from flask import render_template
import os
import uuid
import threading
import argparse
from ctypes import *
import math
import random
import numpy as np
import configparser
import imutils
import cv2
from imutils.video import VideoStream
from PIL import Image,ImageDraw,ImageFont
import matplotlib.cm as mpcm
import datetime
import time
from pyecharts.charts import Bar
from pyecharts import options as opts
app = Flask(__name__)
outputFrame = None
temp_str = str(uuid.uuid1())
print(temp_str)
lock = threading.Lock()
config = configparser.ConfigParser()
config.read('config.ini')
if config['IPCapture']['IP'] != 'no':
# vs = VideoStream(src= config['IPCapture']['IP']).start() # ip摄像头
vs = cv2.VideoCapture(config['IPCapture']['IP']) # ip摄像头
elif config['USBCapture']['USB'] != 'no':
# vs = VideoStream(src=0).start() # USB摄像头或采集卡设备
vs = cv2.VideoCapture(0) # USB摄像头或采集卡设备
elif config['PiCamera']['PI'] != 'no':
# vs = VideoStream(usePiCamera=1).start() # 树莓派
vs = cv2.VideoCapture(1) # 树莓派
elif config['VideoPath']['PATH'] != 'no':
# vs = VideoStream(src="test.mp4").start() # 本地视频源
vs = cv2.VideoCapture("test.mp4") # 本地视频源
hasGPU = config['Device']['Device']
label_name = ['aeroplane','bicycle','bird','boat','bottle','bus','car','cat','chair','cow',
'diningtable','dog','horse','motorbike','person','pottedplant','sheep','sofa','train','tvmonitor']
probs = [0.0] * len(label_name)
time.sleep(2.0)
# ---------------------------通过darknet调用yolo-lite--------------------------------
def change_cv2_draw(image,strs,local,sizes,colour):
'''解决openCV putText中文显示问题
'''
cv2img = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
pilimg = Image.fromarray(cv2img)
draw = ImageDraw.Draw(pilimg)
font = ImageFont.truetype("./static/fonts/Microsoft-Yahei-UI-Light.ttc",sizes,encoding='utf-8')
draw.text(local,strs,colour,font=font)
image = cv2.cvtColor(np.array(pilimg),cv2.COLOR_RGB2BGR)
return image
def colors_subselect(colors, num_classes=20):
'''颜色映射
'''
dt = len(colors) // num_classes
sub_colors = []
for i in range(num_classes):
color = colors[i*dt]
if isinstance(color[0], float):
sub_colors.append([int(c * 255) for c in color])
else:
sub_colors.append([c for c in color])
return sub_colors
colors = colors_subselect(mpcm.plasma.colors, num_classes=20)
colors_tableau = [(255, 152, 150),(148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148),
(227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199),
(188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229),
(188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229),
(255, 152, 150),(148, 103, 189), (197, 176, 213)]
# 调用darknet需要的一些方法
def sample(probs):
s = sum(probs)
probs = [a/s for a in probs]
r = random.uniform(0, 1)
for i in range(len(probs)):
r = r - probs[i]
if r <= 0:
return i
return len(probs)-1
def c_array(ctype, values):
arr = (ctype*len(values))()
arr[:] = values
return arr
class BOX(Structure):
_fields_ = [("x", c_float),
("y", c_float),
("w", c_float),
("h", c_float)]
class DETECTION(Structure):
_fields_ = [("bbox", BOX),
("classes", c_int),
("prob", POINTER(c_float)),
("mask", POINTER(c_float)),
("objectness", c_float),
("sort_class", c_int),
("uc", POINTER(c_float))]
class IMAGE(Structure):
_fields_ = [("w", c_int),
("h", c_int),
("c", c_int),
("data", POINTER(c_float))]
class METADATA(Structure):
_fields_ = [("classes", c_int),
("names", POINTER(c_char_p))]
if os.name == "nt":
cwd = os.path.dirname(__file__)
os.environ['PATH'] = cwd + ';' + os.environ['PATH']
if hasGPU == "True":
winGPUdll = os.path.join(cwd, "yolo_cpp_dll.dll") # GPU!
lib = CDLL(winGPUdll, RTLD_GLOBAL)
else:
winNoGPUdll = os.path.join(cwd, "yolo_cpp_dll_no_gpu.dll")
lib = CDLL(winNoGPUdll, RTLD_GLOBAL)
else:
lib = CDLL("./libdarknet.so", RTLD_GLOBAL) # Lunix
lib.network_width.argtypes = [c_void_p]
lib.network_width.restype = c_int
lib.network_height.argtypes = [c_void_p]
lib.network_height.restype = c_int
copy_image_from_bytes = lib.copy_image_from_bytes
copy_image_from_bytes.argtypes = [IMAGE,c_char_p]
def network_width(net):
return lib.network_width(net)
def network_height(net):
return lib.network_height(net)
predict = lib.network_predict_ptr
predict.argtypes = [c_void_p, POINTER(c_float)]
predict.restype = POINTER(c_float)
if hasGPU:
set_gpu = lib.cuda_set_device
set_gpu.argtypes = [c_int]
make_image = lib.make_image
make_image.argtypes = [c_int, c_int, c_int]
make_image.restype = IMAGE
get_network_boxes = lib.get_network_boxes
get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int), c_int]
get_network_boxes.restype = POINTER(DETECTION)
make_network_boxes = lib.make_network_boxes
make_network_boxes.argtypes = [c_void_p]
make_network_boxes.restype = POINTER(DETECTION)
free_detections = lib.free_detections
free_detections.argtypes = [POINTER(DETECTION), c_int]
free_ptrs = lib.free_ptrs
free_ptrs.argtypes = [POINTER(c_void_p), c_int]
network_predict = lib.network_predict_ptr
network_predict.argtypes = [c_void_p, POINTER(c_float)]
reset_rnn = lib.reset_rnn
reset_rnn.argtypes = [c_void_p]
load_net = lib.load_network
load_net.argtypes = [c_char_p, c_char_p, c_int]
load_net.restype = c_void_p
load_net_custom = lib.load_network_custom
load_net_custom.argtypes = [c_char_p, c_char_p, c_int, c_int]
load_net_custom.restype = c_void_p
do_nms_obj = lib.do_nms_obj
do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
do_nms_sort = lib.do_nms_sort
do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
free_image = lib.free_image
free_image.argtypes = [IMAGE]
letterbox_image = lib.letterbox_image
letterbox_image.argtypes = [IMAGE, c_int, c_int]
letterbox_image.restype = IMAGE
load_meta = lib.get_metadata
lib.get_metadata.argtypes = [c_char_p]
lib.get_metadata.restype = METADATA
load_image = lib.load_image_color
load_image.argtypes = [c_char_p, c_int, c_int]
load_image.restype = IMAGE
rgbgr_image = lib.rgbgr_image
rgbgr_image.argtypes = [IMAGE]
predict_image = lib.network_predict_image
predict_image.argtypes = [c_void_p, IMAGE]
predict_image.restype = POINTER(c_float)
predict_image_letterbox = lib.network_predict_image_letterbox
predict_image_letterbox.argtypes = [c_void_p, IMAGE]
predict_image_letterbox.restype = POINTER(c_float)
def array_to_image(arr):
import numpy as np
# need to return old values to avoid python freeing memory
arr = arr.transpose(2,0,1)
c = arr.shape[0]
h = arr.shape[1]
w = arr.shape[2]
arr = np.ascontiguousarray(arr.flat, dtype=np.float32) / 255.0
data = arr.ctypes.data_as(POINTER(c_float))
im = IMAGE(w,h,c,data)
return im, arr
def classify(net, meta, im):
out = predict_image(net, im)
res = []
for i in range(meta.classes):
if altNames is None:
nameTag = meta.names[i]
else:
nameTag = altNames[i]
res.append((nameTag, out[i]))
res = sorted(res, key=lambda x: -x[1])
return res
def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45, debug= False):
"""
Performs the meat of the detection
"""
im = load_image(image, 0, 0)
if debug: print("Loaded image")
ret = detect_image(net, meta, im, thresh, hier_thresh, nms, debug)
free_image(im)
if debug: print("freed image")
return ret
def detect_image(net, meta, im, thresh=.5, hier_thresh=.5, nms=.45, debug= False):
num = c_int(0)
if debug: print("Assigned num")
pnum = pointer(num)
if debug: print("Assigned pnum")
predict_image(net, im)
letter_box = 0
#predict_image_letterbox(net, im)
#letter_box = 1
if debug: print("did prediction")
#dets = get_network_boxes(net, custom_image_bgr.shape[1], custom_image_bgr.shape[0], thresh, hier_thresh, None, 0, pnum, letter_box) # OpenCV
dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum, letter_box)
if debug: print("Got dets")
num = pnum[0]
if debug: print("got zeroth index of pnum")
if nms:
do_nms_sort(dets, num, meta.classes, nms)
if debug: print("did sort")
res = []
if debug: print("about to range")
for j in range(num):
if debug: print("Ranging on "+str(j)+" of "+str(num))
if debug: print("Classes: "+str(meta), meta.classes, meta.names)
for i in range(meta.classes):
if debug: print("Class-ranging on "+str(i)+" of "+str(meta.classes)+"= "+str(dets[j].prob[i]))
if dets[j].prob[i] > 0:
b = dets[j].bbox
if altNames is None:
nameTag = meta.names[i]
else:
nameTag = altNames[i]
if debug:
print("Got bbox", b)
print(nameTag)
print(dets[j].prob[i])
print((b.x, b.y, b.w, b.h))
res.append((nameTag, dets[j].prob[i], (b.x, b.y, b.w, b.h)))
if debug: print("did range")
res = sorted(res, key=lambda x: -x[1])
if debug: print("did sort")
free_detections(dets, num)
if debug: print("freed detections")
return res
netMain = None
metaMain = None
altNames = None
def performDetect(imagePath="test.jpg", thresh=0.5, configPath="./model/tiny-yolov2-trial13-noBatch.cfg", weightPath="./model/tiny-yolov2-trial13_noBatch.weights", metaPath="./model/voc.data", showImage=True, makeImageOnly=False, initOnly=False):
global metaMain, netMain, altNames #pylint: disable=W0603
assert 0 < thresh < 1, "Threshold should be a float between zero and one (non-inclusive)"
if not os.path.exists(configPath):
raise ValueError("Invalid config path `"+os.path.abspath(configPath)+"`")
if not os.path.exists(weightPath):
raise ValueError("Invalid weight path `"+os.path.abspath(weightPath)+"`")
if not os.path.exists(metaPath):
raise ValueError("Invalid data file path `"+os.path.abspath(metaPath)+"`")
if netMain is None:
netMain = load_net_custom(configPath.encode("ascii"), weightPath.encode("ascii"), 0, 1) # batch size = 1
if metaMain is None:
metaMain = load_meta(metaPath.encode("ascii"))
if altNames is None:
# In Python 3, the metafile default access craps out on Windows (but not Linux)
# Read the names file and create a list to feed to detect
try:
with open(metaPath) as metaFH:
metaContents = metaFH.read()
import re
match = re.search("names *= *(.*)$", metaContents, re.IGNORECASE | re.MULTILINE)
if match:
result = match.group(1)
else:
result = None
try:
if os.path.exists(result):
with open(result) as namesFH:
namesList = namesFH.read().strip().split("\n")
altNames = [x.strip() for x in namesList]
except TypeError:
pass
except Exception:
pass
if initOnly:
print("Initialized detector")
return None
if not os.path.exists(imagePath):
raise ValueError("Invalid image path `"+os.path.abspath(imagePath)+"`")
# Do the detection
#detections = detect(netMain, metaMain, imagePath, thresh) # if is used cv2.imread(image)
detections = detect(netMain, metaMain, imagePath.encode("ascii"), thresh)
if showImage:
try:
scale = 0.4
text_thickness = 1
line_type = 8
thickness=2
image = cv2.imread(imagePath)
print("*** "+str(len(detections))+" Results, color coded by confidence ***")
imcaption = []
img_prob = [0.0]*len(label_name)
for detection in detections:
label = detection[0]
confidence = detection[1]
pstring = label+": "+str(np.rint(100 * confidence))+"%"
img_prob[label_name.index(label)] = np.rint(100 * confidence)
imcaption.append(pstring)
print(pstring)
bounds = detection[2]
shape = image.shape
yExtent = int(bounds[3])
xEntent = int(bounds[2])
# Coordinates are around the center
xCoord = int(bounds[0] - bounds[2]/2)
yCoord = int(bounds[1] - bounds[3]/2)
color = colors_tableau[label_name.index(detection[0])]
p1 = (xCoord, yCoord)
p2 = (xCoord + xEntent,yCoord + yExtent)
if (p2[0] - p1[0] < 1) or (p2[1] - p1[1] < 1):
continue
cv2.rectangle(image, p1, p2, color, thickness)
text_size, baseline = cv2.getTextSize(pstring, cv2.FONT_HERSHEY_SIMPLEX, scale, text_thickness)
cv2.rectangle(image, (p1[0], p1[1] - thickness*10 - baseline), (p1[0] + 2*(text_size[0]-20), p1[1]), color, -1)
image = change_cv2_draw(image,pstring,(p1[0],p1[1]-7*baseline),20,(255,255,255))
except Exception as e:
print("Unable to show image: "+str(e))
return image, img_prob
#--------------------------falsk调用OpenCV和YOLO-lite------------------------------------
# index视图函数
@app.route("/", methods=['GET'])
def index():
return render_template("index.html")
def detect_yolo_lite():
'''
调用yolo-lite
'''
global vs, outputFrame, lock, probs
total = 0
while True:
ret,frame = vs.read()
total += 1
# frame = imutils.resize(frame, width=400)
# if total/10 == 0:
save_path = "./static/images/"+ temp_str + ".jpg"
cv2.imwrite(save_path,frame)
frame, probs = performDetect(imagePath=save_path)
# print(frame)
with lock: # 多线程的线程锁,确保当前线程的数据不被其他线程修改!
outputFrame = frame
def generate():
'''构建生成器
'''
global outputFrame, lock
while True:
with lock:
if outputFrame is None:
continue
(flag,encodedImage) = cv2.imencode(".jpg",outputFrame)
if not flag:
continue
yield(b"--frame\r\n" b"Content-Type:image/jpeg\r\n\r\n"+bytearray(encodedImage)+b"\r\n")
# 显示帧
@app.route("/video_feed")
def video_feed():
return Response(generate(),mimetype='multipart/x-mixed-replace;boundary=frame')
# ajax异步更新echarts数据
@app.route("/get_bar")
def get_bar():
global probs
bar = (
Bar()
.add_xaxis(label_name)
.add_yaxis("Detection Probs",probs)
)
# print(bar.render_embed())
# print(bar.dump_options())
# return render_template("index.html",bar_data=bar.dump_options())
# return bar.dump_options_with_quotes()
return bar.dump_options()
if __name__ == "__main__":
ap = argparse.ArgumentParser()
ap.add_argument("-i","--ip",type=str,required=True,help="IP")
ap.add_argument("-o","--port",type=int,required=True,help="port")
args = vars(ap.parse_args())
# 多线程
t = threading.Thread(target=detect_yolo_lite)
t.daemon = True
t.start()
app.run(host=args["ip"],port=args["port"],debug=True,threaded=True,
use_reloader=False)
#release视频流
vs.stop()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。