Fetch the repository succeeded.
# adapted from
# https://github.com/VICO-UoE/DatasetCondensation
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import kornia as K
import tqdm
from torch.utils.data import Dataset
from torchvision import datasets, transforms
from scipy.ndimage.interpolation import rotate as scipyrotate
from networks import MLP, ConvNet, LeNet, AlexNet, VGG11BN, VGG11, ResNet18, ResNet18BN_AP, ResNet18_AP
class Config:
imagenette = [0, 217, 482, 491, 497, 566, 569, 571, 574, 701]
# ["australian_terrier", "border_terrier", "samoyed", "beagle", "shih-tzu", "english_foxhound", "rhodesian_ridgeback", "dingo", "golden_retriever", "english_sheepdog"]
imagewoof = [193, 182, 258, 162, 155, 167, 159, 273, 207, 229]
# ["tabby_cat", "bengal_cat", "persian_cat", "siamese_cat", "egyptian_cat", "lion", "tiger", "jaguar", "snow_leopard", "lynx"]
imagemeow = [281, 282, 283, 284, 285, 291, 292, 290, 289, 287]
# ["peacock", "flamingo", "macaw", "pelican", "king_penguin", "bald_eagle", "toucan", "ostrich", "black_swan", "cockatoo"]
imagesquawk = [84, 130, 88, 144, 145, 22, 96, 9, 100, 89]
# ["pineapple", "banana", "strawberry", "orange", "lemon", "pomegranate", "fig", "bell_pepper", "cucumber", "green_apple"]
imagefruit = [953, 954, 949, 950, 951, 957, 952, 945, 943, 948]
# ["bee", "ladys slipper", "banana", "lemon", "corn", "school_bus", "honeycomb", "lion", "garden_spider", "goldfinch"]
imageyellow = [309, 986, 954, 951, 987, 779, 599, 291, 72, 11]
dict = {
"imagenette" : imagenette,
"imagewoof" : imagewoof,
"imagefruit": imagefruit,
"imageyellow": imageyellow,
"imagemeow": imagemeow,
"imagesquawk": imagesquawk,
}
config = Config()
def get_dataset(dataset, data_path, batch_size=1, subset="imagenette", args=None):
class_map = None
loader_train_dict = None
class_map_inv = None
if dataset == 'CIFAR10':
channel = 3
im_size = (32, 32)
num_classes = 10
mean = [0.4914, 0.4822, 0.4465]
std = [0.2023, 0.1994, 0.2010]
if args.zca:
transform = transforms.Compose([transforms.ToTensor()])
else:
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])
dst_train = datasets.CIFAR10(data_path, train=True, download=True, transform=transform) # no augmentation
dst_test = datasets.CIFAR10(data_path, train=False, download=True, transform=transform)
class_names = dst_train.classes
class_map = {x:x for x in range(num_classes)}
elif dataset == 'Tiny':
channel = 3
im_size = (64, 64)
num_classes = 200
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
if args.zca:
transform = transforms.Compose([transforms.ToTensor()])
else:
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])
dst_train = datasets.ImageFolder(os.path.join(data_path, "train"), transform=transform) # no augmentation
dst_test = datasets.ImageFolder(os.path.join(data_path, "val", "images"), transform=transform)
class_names = dst_train.classes
class_map = {x:x for x in range(num_classes)}
elif dataset == 'ImageNet':
channel = 3
im_size = (128, 128)
num_classes = 10
config.img_net_classes = config.dict[subset]
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
if args.zca:
transform = transforms.Compose([transforms.ToTensor(),
transforms.Resize(im_size),
transforms.CenterCrop(im_size)])
else:
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
transforms.Resize(im_size),
transforms.CenterCrop(im_size)])
dst_train = datasets.ImageNet(data_path, split="train", transform=transform) # no augmentation
dst_train_dict = {c : torch.utils.data.Subset(dst_train, np.squeeze(np.argwhere(np.equal(dst_train.targets, config.img_net_classes[c])))) for c in range(len(config.img_net_classes))}
dst_train = torch.utils.data.Subset(dst_train, np.squeeze(np.argwhere(np.isin(dst_train.targets, config.img_net_classes))))
loader_train_dict = {c : torch.utils.data.DataLoader(dst_train_dict[c], batch_size=batch_size, shuffle=True, num_workers=16) for c in range(len(config.img_net_classes))}
dst_test = datasets.ImageNet(data_path, split="val", transform=transform)
dst_test = torch.utils.data.Subset(dst_test, np.squeeze(np.argwhere(np.isin(dst_test.targets, config.img_net_classes))))
for c in range(len(config.img_net_classes)):
dst_test.dataset.targets[dst_test.dataset.targets == config.img_net_classes[c]] = c
dst_train.dataset.targets[dst_train.dataset.targets == config.img_net_classes[c]] = c
print(dst_test.dataset)
class_map = {x: i for i, x in enumerate(config.img_net_classes)}
class_map_inv = {i: x for i, x in enumerate(config.img_net_classes)}
class_names = None
elif dataset.startswith('CIFAR100'):
channel = 3
im_size = (32, 32)
num_classes = 100
mean = [0.4914, 0.4822, 0.4465]
std = [0.2023, 0.1994, 0.2010]
if args.zca:
transform = transforms.Compose([transforms.ToTensor()])
else:
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])
dst_train = datasets.CIFAR100(data_path, train=True, download=True, transform=transform) # no augmentation
dst_test = datasets.CIFAR100(data_path, train=False, download=True, transform=transform)
class_names = dst_train.classes
class_map = {x: x for x in range(num_classes)}
else:
exit('unknown dataset: %s'%dataset)
if args.zca:
images = []
labels = []
print("Train ZCA")
for i in tqdm.tqdm(range(len(dst_train))):
im, lab = dst_train[i]
images.append(im)
labels.append(lab)
images = torch.stack(images, dim=0).to(args.device)
labels = torch.tensor(labels, dtype=torch.long, device="cpu")
zca = K.enhance.ZCAWhitening(eps=0.1, compute_inv=True)
zca.fit(images)
zca_images = zca(images).to("cpu")
dst_train = TensorDataset(zca_images, labels)
images = []
labels = []
print("Test ZCA")
for i in tqdm.tqdm(range(len(dst_test))):
im, lab = dst_test[i]
images.append(im)
labels.append(lab)
images = torch.stack(images, dim=0).to(args.device)
labels = torch.tensor(labels, dtype=torch.long, device="cpu")
zca_images = zca(images).to("cpu")
dst_test = TensorDataset(zca_images, labels)
args.zca_trans = zca
testloader = torch.utils.data.DataLoader(dst_test, batch_size=128, shuffle=False, num_workers=2)
return channel, im_size, num_classes, class_names, mean, std, dst_train, dst_test, testloader, loader_train_dict, class_map, class_map_inv
class TensorDataset(Dataset):
def __init__(self, images, labels): # images: n x c x h x w tensor
self.images = images.detach().float()
self.labels = labels.detach()
def __getitem__(self, index):
return self.images[index], self.labels[index]
def __len__(self):
return self.images.shape[0]
def get_default_convnet_setting():
net_width, net_depth, net_act, net_norm, net_pooling = 128, 3, 'relu', 'instancenorm', 'avgpooling'
return net_width, net_depth, net_act, net_norm, net_pooling
def get_network(model, channel, num_classes, im_size=(32, 32), dist=True):
torch.random.manual_seed(int(time.time() * 1000) % 100000)
net_width, net_depth, net_act, net_norm, net_pooling = get_default_convnet_setting()
if model == 'MLP':
net = MLP(channel=channel, num_classes=num_classes)
elif model == 'ConvNet':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth, net_act=net_act, net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'LeNet':
net = LeNet(channel=channel, num_classes=num_classes)
elif model == 'AlexNet':
net = AlexNet(channel=channel, num_classes=num_classes)
elif model == 'VGG11':
net = VGG11( channel=channel, num_classes=num_classes)
elif model == 'VGG11BN':
net = VGG11BN(channel=channel, num_classes=num_classes)
elif model == 'ResNet18':
net = ResNet18(channel=channel, num_classes=num_classes)
elif model == 'ResNet18BN_AP':
net = ResNet18BN_AP(channel=channel, num_classes=num_classes)
elif model == 'ResNet18_AP':
net = ResNet18_AP(channel=channel, num_classes=num_classes)
elif model == 'ConvNetD1':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=1, net_act=net_act, net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetD2':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=2, net_act=net_act, net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetD3':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=3, net_act=net_act, net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetD4':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=4, net_act=net_act, net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetD5':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=5, net_act=net_act, net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetD6':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=6, net_act=net_act, net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetD7':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=7, net_act=net_act, net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetD8':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=8, net_act=net_act, net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetW32':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=32, net_depth=net_depth, net_act=net_act, net_norm=net_norm, net_pooling=net_pooling)
elif model == 'ConvNetW64':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=64, net_depth=net_depth, net_act=net_act, net_norm=net_norm, net_pooling=net_pooling)
elif model == 'ConvNetW128':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=128, net_depth=net_depth, net_act=net_act, net_norm=net_norm, net_pooling=net_pooling)
elif model == 'ConvNetW256':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=256, net_depth=net_depth, net_act=net_act, net_norm=net_norm, net_pooling=net_pooling)
elif model == 'ConvNetW512':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=512, net_depth=net_depth, net_act=net_act, net_norm=net_norm, net_pooling=net_pooling)
elif model == 'ConvNetW1024':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=1024, net_depth=net_depth, net_act=net_act, net_norm=net_norm, net_pooling=net_pooling)
elif model == "ConvNetKIP":
net = ConvNet(channel=channel, num_classes=num_classes, net_width=1024, net_depth=net_depth, net_act=net_act,
net_norm="none", net_pooling=net_pooling)
elif model == 'ConvNetAS':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth, net_act='sigmoid', net_norm=net_norm, net_pooling=net_pooling)
elif model == 'ConvNetAR':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth, net_act='relu', net_norm=net_norm, net_pooling=net_pooling)
elif model == 'ConvNetAL':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth, net_act='leakyrelu', net_norm=net_norm, net_pooling=net_pooling)
elif model == 'ConvNetNN':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth, net_act=net_act, net_norm='none', net_pooling=net_pooling)
elif model == 'ConvNetBN':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth, net_act=net_act, net_norm='batchnorm', net_pooling=net_pooling)
elif model == 'ConvNetLN':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth, net_act=net_act, net_norm='layernorm', net_pooling=net_pooling)
elif model == 'ConvNetIN':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth, net_act=net_act, net_norm='instancenorm', net_pooling=net_pooling)
elif model == 'ConvNetGN':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth, net_act=net_act, net_norm='groupnorm', net_pooling=net_pooling)
elif model == 'ConvNetNP':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth, net_act=net_act, net_norm=net_norm, net_pooling='none')
elif model == 'ConvNetMP':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth, net_act=net_act, net_norm=net_norm, net_pooling='maxpooling')
elif model == 'ConvNetAP':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth, net_act=net_act, net_norm=net_norm, net_pooling='avgpooling')
else:
net = None
exit('DC error: unknown model')
if dist:
gpu_num = torch.cuda.device_count()
if gpu_num>0:
device = 'cuda'
if gpu_num>1:
net = nn.DataParallel(net)
else:
device = 'cpu'
net = net.to(device)
return net
def get_time():
return str(time.strftime("[%Y-%m-%d %H:%M:%S]", time.localtime()))
def epoch(mode, dataloader, net, optimizer, criterion, args, aug, texture=False):
loss_avg, acc_avg, num_exp = 0, 0, 0
net = net.to(args.device)
if args.dataset == "ImageNet":
class_map = {x: i for i, x in enumerate(config.img_net_classes)}
if mode == 'train':
net.train()
else:
net.eval()
for i_batch, datum in enumerate(dataloader):
img = datum[0].float().to(args.device)
lab = datum[1].long().to(args.device)
if mode == "train" and texture:
img = torch.cat([torch.stack([torch.roll(im, (torch.randint(args.im_size[0]*args.canvas_size, (1,)), torch.randint(args.im_size[0]*args.canvas_size, (1,))), (1,2))[:,:args.im_size[0],:args.im_size[1]] for im in img]) for _ in range(args.canvas_samples)])
lab = torch.cat([lab for _ in range(args.canvas_samples)])
if aug:
if args.dsa:
img = DiffAugment(img, args.dsa_strategy, param=args.dsa_param)
else:
img = augment(img, args.dc_aug_param, device=args.device)
if args.dataset == "ImageNet" and mode != "train":
lab = torch.tensor([class_map[x.item()] for x in lab]).to(args.device)
n_b = lab.shape[0]
output = net(img)
loss = criterion(output, lab)
acc = np.sum(np.equal(np.argmax(output.cpu().data.numpy(), axis=-1), lab.cpu().data.numpy()))
loss_avg += loss.item()*n_b
acc_avg += acc
num_exp += n_b
if mode == 'train':
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_avg /= num_exp
acc_avg /= num_exp
return loss_avg, acc_avg
def evaluate_synset(it_eval, net, images_train, labels_train, testloader, args, return_loss=False, texture=False):
net = net.to(args.device)
images_train = images_train.to(args.device)
labels_train = labels_train.to(args.device)
lr = float(args.lr_net)
Epoch = int(args.epoch_eval_train)
lr_schedule = [Epoch//2+1]
optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=0.0005)
criterion = nn.CrossEntropyLoss().to(args.device)
dst_train = TensorDataset(images_train, labels_train)
trainloader = torch.utils.data.DataLoader(dst_train, batch_size=args.batch_train, shuffle=True, num_workers=0)
start = time.time()
acc_train_list = []
loss_train_list = []
for ep in tqdm.tqdm(range(Epoch+1)):
loss_train, acc_train = epoch('train', trainloader, net, optimizer, criterion, args, aug=True, texture=texture)
acc_train_list.append(acc_train)
loss_train_list.append(loss_train)
if ep == Epoch:
with torch.no_grad():
loss_test, acc_test = epoch('test', testloader, net, optimizer, criterion, args, aug=False)
if ep in lr_schedule:
lr *= 0.1
optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=0.0005)
time_train = time.time() - start
print('%s Evaluate_%02d: epoch = %04d train time = %d s train loss = %.6f train acc = %.4f, test acc = %.4f' % (get_time(), it_eval, Epoch, int(time_train), loss_train, acc_train, acc_test))
if return_loss:
return net, acc_train_list, acc_test, loss_train_list, loss_test
else:
return net, acc_train_list, acc_test
def augment(images, dc_aug_param, device):
# This can be sped up in the future.
if dc_aug_param != None and dc_aug_param['strategy'] != 'none':
scale = dc_aug_param['scale']
crop = dc_aug_param['crop']
rotate = dc_aug_param['rotate']
noise = dc_aug_param['noise']
strategy = dc_aug_param['strategy']
shape = images.shape
mean = []
for c in range(shape[1]):
mean.append(float(torch.mean(images[:,c])))
def cropfun(i):
im_ = torch.zeros(shape[1],shape[2]+crop*2,shape[3]+crop*2, dtype=torch.float, device=device)
for c in range(shape[1]):
im_[c] = mean[c]
im_[:, crop:crop+shape[2], crop:crop+shape[3]] = images[i]
r, c = np.random.permutation(crop*2)[0], np.random.permutation(crop*2)[0]
images[i] = im_[:, r:r+shape[2], c:c+shape[3]]
def scalefun(i):
h = int((np.random.uniform(1 - scale, 1 + scale)) * shape[2])
w = int((np.random.uniform(1 - scale, 1 + scale)) * shape[2])
tmp = F.interpolate(images[i:i + 1], [h, w], )[0]
mhw = max(h, w, shape[2], shape[3])
im_ = torch.zeros(shape[1], mhw, mhw, dtype=torch.float, device=device)
r = int((mhw - h) / 2)
c = int((mhw - w) / 2)
im_[:, r:r + h, c:c + w] = tmp
r = int((mhw - shape[2]) / 2)
c = int((mhw - shape[3]) / 2)
images[i] = im_[:, r:r + shape[2], c:c + shape[3]]
def rotatefun(i):
im_ = scipyrotate(images[i].cpu().data.numpy(), angle=np.random.randint(-rotate, rotate), axes=(-2, -1), cval=np.mean(mean))
r = int((im_.shape[-2] - shape[-2]) / 2)
c = int((im_.shape[-1] - shape[-1]) / 2)
images[i] = torch.tensor(im_[:, r:r + shape[-2], c:c + shape[-1]], dtype=torch.float, device=device)
def noisefun(i):
images[i] = images[i] + noise * torch.randn(shape[1:], dtype=torch.float, device=device)
augs = strategy.split('_')
for i in range(shape[0]):
choice = np.random.permutation(augs)[0] # randomly implement one augmentation
if choice == 'crop':
cropfun(i)
elif choice == 'scale':
scalefun(i)
elif choice == 'rotate':
rotatefun(i)
elif choice == 'noise':
noisefun(i)
return images
def get_daparam(dataset, model, model_eval, ipc):
# We find that augmentation doesn't always benefit the performance.
# So we do augmentation for some of the settings.
dc_aug_param = dict()
dc_aug_param['crop'] = 4
dc_aug_param['scale'] = 0.2
dc_aug_param['rotate'] = 45
dc_aug_param['noise'] = 0.001
dc_aug_param['strategy'] = 'none'
if dataset == 'MNIST':
dc_aug_param['strategy'] = 'crop_scale_rotate'
if model_eval in ['ConvNetBN']: # Data augmentation makes model training with Batch Norm layer easier.
dc_aug_param['strategy'] = 'crop_noise'
return dc_aug_param
def get_eval_pool(eval_mode, model, model_eval):
if eval_mode == 'M': # multiple architectures
# model_eval_pool = ['MLP', 'ConvNet', 'AlexNet', 'VGG11', 'ResNet18', 'LeNet']
model_eval_pool = ['ConvNet', 'AlexNet', 'VGG11', 'ResNet18_AP', 'ResNet18']
# model_eval_pool = ['MLP', 'ConvNet', 'AlexNet', 'VGG11', 'ResNet18']
elif eval_mode == 'W': # ablation study on network width
model_eval_pool = ['ConvNetW32', 'ConvNetW64', 'ConvNetW128', 'ConvNetW256']
elif eval_mode == 'D': # ablation study on network depth
model_eval_pool = ['ConvNetD1', 'ConvNetD2', 'ConvNetD3', 'ConvNetD4']
elif eval_mode == 'A': # ablation study on network activation function
model_eval_pool = ['ConvNetAS', 'ConvNetAR', 'ConvNetAL']
elif eval_mode == 'P': # ablation study on network pooling layer
model_eval_pool = ['ConvNetNP', 'ConvNetMP', 'ConvNetAP']
elif eval_mode == 'N': # ablation study on network normalization layer
model_eval_pool = ['ConvNetNN', 'ConvNetBN', 'ConvNetLN', 'ConvNetIN', 'ConvNetGN']
elif eval_mode == 'S': # itself
model_eval_pool = [model[:model.index('BN')]] if 'BN' in model else [model]
elif eval_mode == 'C':
model_eval_pool = [model, 'ConvNet']
else:
model_eval_pool = [model_eval]
return model_eval_pool
class ParamDiffAug():
def __init__(self):
self.aug_mode = 'S' #'multiple or single'
self.prob_flip = 0.5
self.ratio_scale = 1.2
self.ratio_rotate = 15.0
self.ratio_crop_pad = 0.125
self.ratio_cutout = 0.5 # the size would be 0.5x0.5
self.ratio_noise = 0.05
self.brightness = 1.0
self.saturation = 2.0
self.contrast = 0.5
def set_seed_DiffAug(param):
if param.latestseed == -1:
return
else:
torch.random.manual_seed(param.latestseed)
param.latestseed += 1
def DiffAugment(x, strategy='', seed = -1, param = None):
if seed == -1:
param.batchmode = False
else:
param.batchmode = True
param.latestseed = seed
if strategy == 'None' or strategy == 'none':
return x
if strategy:
if param.aug_mode == 'M': # original
for p in strategy.split('_'):
for f in AUGMENT_FNS[p]:
x = f(x, param)
elif param.aug_mode == 'S':
pbties = strategy.split('_')
set_seed_DiffAug(param)
p = pbties[torch.randint(0, len(pbties), size=(1,)).item()]
for f in AUGMENT_FNS[p]:
x = f(x, param)
else:
exit('Error ZH: unknown augmentation mode.')
x = x.contiguous()
return x
# We implement the following differentiable augmentation strategies based on the code provided in https://github.com/mit-han-lab/data-efficient-gans.
def rand_scale(x, param):
# x>1, max scale
# sx, sy: (0, +oo), 1: orignial size, 0.5: enlarge 2 times
ratio = param.ratio_scale
set_seed_DiffAug(param)
sx = torch.rand(x.shape[0]) * (ratio - 1.0/ratio) + 1.0/ratio
set_seed_DiffAug(param)
sy = torch.rand(x.shape[0]) * (ratio - 1.0/ratio) + 1.0/ratio
theta = [[[sx[i], 0, 0],
[0, sy[i], 0],] for i in range(x.shape[0])]
theta = torch.tensor(theta, dtype=torch.float)
if param.batchmode: # batch-wise:
theta[:] = theta[0]
grid = F.affine_grid(theta, x.shape, align_corners=True).to(x.device)
x = F.grid_sample(x, grid, align_corners=True)
return x
def rand_rotate(x, param): # [-180, 180], 90: anticlockwise 90 degree
ratio = param.ratio_rotate
set_seed_DiffAug(param)
theta = (torch.rand(x.shape[0]) - 0.5) * 2 * ratio / 180 * float(np.pi)
theta = [[[torch.cos(theta[i]), torch.sin(-theta[i]), 0],
[torch.sin(theta[i]), torch.cos(theta[i]), 0],] for i in range(x.shape[0])]
theta = torch.tensor(theta, dtype=torch.float)
if param.batchmode: # batch-wise:
theta[:] = theta[0]
grid = F.affine_grid(theta, x.shape, align_corners=True).to(x.device)
x = F.grid_sample(x, grid, align_corners=True)
return x
def rand_flip(x, param):
prob = param.prob_flip
set_seed_DiffAug(param)
randf = torch.rand(x.size(0), 1, 1, 1, device=x.device)
if param.batchmode: # batch-wise:
randf[:] = randf[0]
return torch.where(randf < prob, x.flip(3), x)
def rand_brightness(x, param):
ratio = param.brightness
set_seed_DiffAug(param)
randb = torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device)
if param.batchmode: # batch-wise:
randb[:] = randb[0]
x = x + (randb - 0.5)*ratio
return x
def rand_saturation(x, param):
ratio = param.saturation
x_mean = x.mean(dim=1, keepdim=True)
set_seed_DiffAug(param)
rands = torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device)
if param.batchmode: # batch-wise:
rands[:] = rands[0]
x = (x - x_mean) * (rands * ratio) + x_mean
return x
def rand_contrast(x, param):
ratio = param.contrast
x_mean = x.mean(dim=[1, 2, 3], keepdim=True)
set_seed_DiffAug(param)
randc = torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device)
if param.batchmode: # batch-wise:
randc[:] = randc[0]
x = (x - x_mean) * (randc + ratio) + x_mean
return x
def rand_crop(x, param):
# The image is padded on its surrounding and then cropped.
ratio = param.ratio_crop_pad
shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
set_seed_DiffAug(param)
translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device)
set_seed_DiffAug(param)
translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device)
if param.batchmode: # batch-wise:
translation_x[:] = translation_x[0]
translation_y[:] = translation_y[0]
grid_batch, grid_x, grid_y = torch.meshgrid(
torch.arange(x.size(0), dtype=torch.long, device=x.device),
torch.arange(x.size(2), dtype=torch.long, device=x.device),
torch.arange(x.size(3), dtype=torch.long, device=x.device),
)
grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1)
grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1)
x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0])
x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2)
return x
def rand_cutout(x, param):
ratio = param.ratio_cutout
cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
set_seed_DiffAug(param)
offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device)
set_seed_DiffAug(param)
offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device)
if param.batchmode: # batch-wise:
offset_x[:] = offset_x[0]
offset_y[:] = offset_y[0]
grid_batch, grid_x, grid_y = torch.meshgrid(
torch.arange(x.size(0), dtype=torch.long, device=x.device),
torch.arange(cutout_size[0], dtype=torch.long, device=x.device),
torch.arange(cutout_size[1], dtype=torch.long, device=x.device),
)
grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1)
grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1)
mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device)
mask[grid_batch, grid_x, grid_y] = 0
x = x * mask.unsqueeze(1)
return x
AUGMENT_FNS = {
'color': [rand_brightness, rand_saturation, rand_contrast],
'crop': [rand_crop],
'cutout': [rand_cutout],
'flip': [rand_flip],
'scale': [rand_scale],
'rotate': [rand_rotate],
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。