代码拉取完成,页面将自动刷新
function kf = kf_prediction(kf, dt)
% kf_prediction: Prediction update part of the Kalman filter algorithm.
%
% INPUT
% kf: data structure with at least the following fields:
% xp: 21x1 a posteriori state vector (old).
% Pp: 21x21 a posteriori error covariance (old).
% F: 21x21 state transition matrix.
% Q: 12x12 process noise covariance.
% G: 21x12 control-input matrix.
% dt: sampling interval.
%
% OUTPUT
% kf: the following fields are updated:
% xi: 21x1 a priori state vector (updated).
% Pi: 21x21 a priori error covariance.
% A: 21x21 state transition matrix.
% Qd: 21x6 discrete process noise covariance.
%
% Copyright (C) 2014, Rodrigo Gonzalez, all rights reserved.
%
% This file is part of NaveGo, an open-source MATLAB toolbox for
% simulation of integrated navigation systems.
%
% NaveGo is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License (LGPL)
% version 3 as published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Lesser General Public
% License along with this program. If not, see
% <http://www.gnu.org/licenses/>.
%
% Reference:
% R. Gonzalez, J. Giribet, and H. Patiño. NaveGo: a
% simulation framework for low-cost integrated navigation systems,
% Journal of Control Engineering and Applied Informatics, vol. 17,
% issue 2, pp. 110-120, 2015. Alg. 1.
%
% Dan Simon. Optimal State Estimation. Chapter 5. John Wiley
% & Sons. 2006.
%
% Version: 001
% Date: 2019/04/19
% Author: Rodrigo Gonzalez <rodralez@frm.utn.edu.ar>
% URL: https://github.com/rodralez/navego
% Discretization of continous-time system
kf.A = expm(kf.F * dt); % Exact solution for linerar systems
% S.A = I + (S.F * dt); % Approximated solution by Euler method
kf.Qd = (kf.G * kf.Q * kf.G') .* dt; % Digitalized covariance matrix
% Step 1, predict the a priori state vector xi
kf.xi = kf.A * kf.xp;
% Step 2, update the a priori covariance matrix Pi
kf.Pi = (kf.A * kf.Pp * kf.A') + kf.Qd;
kf.Pi = 0.5 .* (kf.Pi + kf.Pi'); % Force Pi to be symmetric matrix
end
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。