代码拉取完成,页面将自动刷新
"""
Utilities for instrumenting a torch model.
Trace will hook one layer at a time.
TraceDict will hook multiple layers at once.
subsequence slices intervals from Sequential modules.
get_module, replace_module, get_parameter resolve dotted names.
set_requires_grad recursively sets requires_grad in module parameters.
"""
import contextlib
import copy
import inspect
from collections import OrderedDict
import torch
import numpy as np
# Trace function
class Trace(contextlib.AbstractContextManager):
"""
To retain the output of the named layer during the computation of
the given network:
with Trace(net, 'layer.name') as ret:
_ = net(inp)
representation = ret.output
A layer module can be passed directly without a layer name, and
its output will be retained. By default, a direct reference to
the output object is returned, but options can control this:
clone=True - retains a copy of the output, which can be
useful if you want to see the output before it might
be modified by the network in-place later.
detach=True - retains a detached reference or copy. (By
default the value would be left attached to the graph.)
retain_grad=True - request gradient to be retained on the
output. After backward(), ret.output.grad is populated.
retain_input=True - also retains the input.
retain_output=False - can disable retaining the output.
edit_output=fn - calls the function to modify the output
of the layer before passing it the rest of the model.
fn can optionally accept (output, layer) arguments
for the original output and the layer name.
stop=True - throws a StopForward exception after the layer
is run, which allows running just a portion of a model.
"""
def __init__(
self,
module,
layer=None,
retain_output=True,
retain_input=False,
clone=False,
detach=False,
retain_grad=False,
edit_output=None,
stop=False,
):
"""
Method to replace a forward method with a closure that
intercepts the call, and tracks the hook so that it can be reverted.
"""
# Retainer
retainer = self
if edit_output == 'single':
#print(f'In edit output .... ')
self.token_index = layer[0]
self.layer = layer[1]
else:
self.layer = layer
# Layer is not None;
if self.layer is not None:
module = get_module(module, self.layer)
# Retain hook function
def retain_hook(m, inputs, output):
# False - as input
if retain_input:
print(f'Retainer Input ... ###')
# retainer.input = recursive_copy(
# inputs[0] if len(inputs) == 1 else inputs,
# clone=clone,
# detach=detach,
# retain_grad=False,
# ) # retain_grad applies to output only.
# False - as input
if edit_output:
# Edit-Output ----> Single
if edit_output == 'single':
# Perform the replacement operation
if 'self_attn' in self.layer:
output[0][2][self.token_index] = output[0][0][self.token_index]
elif 'mlp' in self.layer:
output[2][self.token_index] = output[0][self.token_index]
# Only true
if retain_output:
# Retainer output -
retainer.output = recursive_copy(
output, clone=clone, detach=detach, retain_grad=retain_grad
)
# When retain_grad is set, also insert a trivial
# copy operation. That allows in-place operations
# to follow without error.
# This is not required
if retain_grad:
output = recursive_copy(retainer.output, clone=True, detach=False)
if stop:
raise StopForward()
return output
# Registering the hook
self.registered_hook = module.register_forward_hook(retain_hook)
self.stop = stop
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
self.close()
if self.stop and issubclass(type, StopForward):
return True
def close(self):
self.registered_hook.remove()
class TraceDict(OrderedDict, contextlib.AbstractContextManager):
"""
To retain the output of multiple named layers during the computation
of the given network:
with TraceDict(net, ['layer1.name1', 'layer2.name2']) as ret:
_ = net(inp)
representation = ret['layer1.name1'].output
If edit_output is provided, it should be a function that takes
two arguments: output, and the layer name; and then it returns the
modified output.
Other arguments are the same as Trace. If stop is True, then the
execution of the network will be stopped after the last layer
listed (even if it would not have been the last to be executed).
"""
def __init__(
self,
module,
layers=None,
retain_output=True,
retain_input=False,
clone=False,
detach=False,
retain_grad=False,
edit_output=None,
stop=False,
):
self.stop = stop
# def flag_last_unseen(it):
# try:
# it = iter(it)
# prev = next(it)
# seen = set([prev])
# except StopIteration:
# return
# for item in it:
# if item not in seen:
# yield False, prev
# seen.add(item)
# prev = item
# yield True, prev
# for is_last, layer in flag_last_unseen(layers):
# self[layer] = Trace(
# module=module,
# layer=layer,
# retain_output=retain_output,
# retain_input=retain_input,
# clone=clone,
# detach=detach,
# retain_grad=retain_grad,
# edit_output=edit_output,
# stop=stop and is_last,
# )
for layer in layers:
self[layer[1]] = Trace(
module=module,
layer=layer,
retain_output=False,
retain_input=retain_input,
edit_output='single'
)
#
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
self.close()
if self.stop and issubclass(type, StopForward):
return True
def close(self):
for layer, trace in reversed(self.items()):
trace.close()
class StopForward(Exception):
"""
If the only output needed from running a network is the retained
submodule then Trace(submodule, stop=True) will stop execution
immediately after the retained submodule by raising the StopForward()
exception. When Trace is used as context manager, it catches that
exception and can be used as follows:
with Trace(net, layername, stop=True) as tr:
net(inp) # Only runs the network up to layername
print(tr.output)
"""
pass
def recursive_copy(x, clone=None, detach=None, retain_grad=None):
"""
Copies a reference to a tensor, or an object that contains tensors,
optionally detaching and cloning the tensor(s). If retain_grad is
true, the original tensors are marked to have grads retained.
"""
if not clone and not detach and not retain_grad:
######## Note : This step is activated ########
return x
if isinstance(x, torch.Tensor):
if retain_grad:
if not x.requires_grad:
x.requires_grad = True
x.retain_grad()
elif detach:
x = x.detach()
if clone:
x = x.clone()
return x
# Only dicts, lists, and tuples (and subclasses) can be copied.
if isinstance(x, dict):
return type(x)({k: recursive_copy(v) for k, v in x.items()})
elif isinstance(x, (list, tuple)):
return type(x)([recursive_copy(v) for v in x])
else:
assert False, f"Unknown type {type(x)} cannot be broken into tensors."
def subsequence(
sequential,
first_layer=None,
last_layer=None,
after_layer=None,
upto_layer=None,
single_layer=None,
share_weights=False,
):
"""
Creates a subsequence of a pytorch Sequential model, copying over
modules together with parameters for the subsequence. Only
modules from first_layer to last_layer (inclusive) are included,
or modules between after_layer and upto_layer (exclusive).
Handles descent into dotted layer names as long as all references
are within nested Sequential models.
If share_weights is True, then references the original modules
and their parameters without copying them. Otherwise, by default,
makes a separate brand-new copy.
"""
assert (single_layer is None) or (
first_layer is last_layer is after_layer is upto_layer is None
)
if single_layer is not None:
first_layer = single_layer
last_layer = single_layer
first, last, after, upto = [
None if d is None else d.split(".")
for d in [first_layer, last_layer, after_layer, upto_layer]
]
return hierarchical_subsequence(
sequential,
first=first,
last=last,
after=after,
upto=upto,
share_weights=share_weights,
)
def hierarchical_subsequence(
sequential, first, last, after, upto, share_weights=False, depth=0
):
"""
Recursive helper for subsequence() to support descent into dotted
layer names. In this helper, first, last, after, and upto are
arrays of names resulting from splitting on dots. Can only
descend into nested Sequentials.
"""
assert (last is None) or (upto is None)
assert (first is None) or (after is None)
if first is last is after is upto is None:
return sequential if share_weights else copy.deepcopy(sequential)
assert isinstance(sequential, torch.nn.Sequential), (
".".join((first or last or after or upto)[:depth] or "arg") + " not Sequential"
)
including_children = (first is None) and (after is None)
included_children = OrderedDict()
# A = current level short name of A.
# AN = full name for recursive descent if not innermost.
(F, FN), (L, LN), (A, AN), (U, UN) = [
(d[depth], (None if len(d) == depth + 1 else d))
if d is not None
else (None, None)
for d in [first, last, after, upto]
]
for name, layer in sequential._modules.items():
if name == F:
first = None
including_children = True
if name == A and AN is not None: # just like F if not a leaf.
after = None
including_children = True
if name == U and UN is None:
upto = None
including_children = False
if including_children:
# AR = full name for recursive descent if name matches.
FR, LR, AR, UR = [
n if n is None or n[depth] == name else None for n in [FN, LN, AN, UN]
]
chosen = hierarchical_subsequence(
layer,
first=FR,
last=LR,
after=AR,
upto=UR,
share_weights=share_weights,
depth=depth + 1,
)
if chosen is not None:
included_children[name] = chosen
if name == L:
last = None
including_children = False
if name == U and UN is not None: # just like L if not a leaf.
upto = None
including_children = False
if name == A and AN is None:
after = None
including_children = True
for name in [first, last, after, upto]:
if name is not None:
raise ValueError("Layer %s not found" % ".".join(name))
# Omit empty subsequences except at the outermost level,
# where we should not return None.
if not len(included_children) and depth > 0:
return None
result = torch.nn.Sequential(included_children)
result.training = sequential.training
return result
def set_requires_grad(requires_grad, *models):
"""
Sets requires_grad true or false for all parameters within the
models passed.
"""
for model in models:
if isinstance(model, torch.nn.Module):
for param in model.parameters():
param.requires_grad = requires_grad
elif isinstance(model, (torch.nn.Parameter, torch.Tensor)):
model.requires_grad = requires_grad
else:
assert False, "unknown type %r" % type(model)
def get_module(model, name):
"""
Finds the named module within the given model.
"""
for n, m in model.named_modules():
#
if n == name:
#print(f'## Name : {n}')
return m
raise LookupError(name)
def get_parameter(model, name):
"""
Finds the named parameter within the given model.
"""
for n, p in model.named_parameters():
if n == name:
return p
raise LookupError(name)
def replace_module(model, name, new_module):
"""
Replaces the named module within the given model.
"""
if "." in name:
parent_name, attr_name = name.rsplit(".", 1)
model = get_module(model, parent_name)
# original_module = getattr(model, attr_name)
setattr(model, attr_name, new_module)
def invoke_with_optional_args(fn, *args, **kwargs):
"""
Invokes a function with only the arguments that it
is written to accept, giving priority to arguments
that match by-name, using the following rules.
(1) arguments with matching names are passed by name.
(2) remaining non-name-matched args are passed by order.
(3) extra caller arguments that the function cannot
accept are not passed.
(4) extra required function arguments that the caller
cannot provide cause a TypeError to be raised.
Ordinary python calling conventions are helpful for
supporting a function that might be revised to accept
extra arguments in a newer version, without requiring the
caller to pass those new arguments. This function helps
support function callers that might be revised to supply
extra arguments, without requiring the callee to accept
those new arguments.
"""
argspec = inspect.getfullargspec(fn)
pass_args = []
used_kw = set()
unmatched_pos = []
used_pos = 0
defaulted_pos = len(argspec.args) - (
0 if not argspec.defaults else len(argspec.defaults)
)
# Pass positional args that match name first, then by position.
for i, n in enumerate(argspec.args):
if n in kwargs:
pass_args.append(kwargs[n])
used_kw.add(n)
elif used_pos < len(args):
pass_args.append(args[used_pos])
used_pos += 1
else:
unmatched_pos.append(len(pass_args))
pass_args.append(
None if i < defaulted_pos else argspec.defaults[i - defaulted_pos]
)
# Fill unmatched positional args with unmatched keyword args in order.
if len(unmatched_pos):
for k, v in kwargs.items():
if k in used_kw or k in argspec.kwonlyargs:
continue
pass_args[unmatched_pos[0]] = v
used_kw.add(k)
unmatched_pos = unmatched_pos[1:]
if len(unmatched_pos) == 0:
break
else:
if unmatched_pos[0] < defaulted_pos:
unpassed = ", ".join(
argspec.args[u] for u in unmatched_pos if u < defaulted_pos
)
raise TypeError(f"{fn.__name__}() cannot be passed {unpassed}.")
# Pass remaining kw args if they can be accepted.
pass_kw = {
k: v
for k, v in kwargs.items()
if k not in used_kw and (k in argspec.kwonlyargs or argspec.varargs is not None)
}
# Pass remaining positional args if they can be accepted.
if argspec.varargs is not None:
pass_args += list(args[used_pos:])
return fn(*pass_args, **pass_kw)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。