代码拉取完成,页面将自动刷新
#!/usr/bin/env python3
# coding: utf-8
# File: lstm_predict.py
# Author: lhy<lhy_in_blcu@126.com,https://huangyong.github.io>
# Date: 18-5-23
import numpy as np
from keras import backend as K
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential,load_model
from keras.layers import Embedding, Bidirectional, LSTM, Dense, TimeDistributed, Dropout
from keras_contrib.layers.crf import CRF
import matplotlib.pyplot as plt
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
class LSTMNER:
def __init__(self):
cur = '/'.join(os.path.abspath(__file__).split('/')[:-1])
self.train_path = os.path.join(cur, 'data/train.txt')
self.vocab_path = os.path.join(cur, 'model/vocab.txt')
self.embedding_file = os.path.join(cur, 'model/token_vec_300.bin')
self.model_path = os.path.join(cur, 'model/tokenvec_bilstm2_crf_model_20.h5')
self.word_dict = self.load_worddict()
self.class_dict ={
'O':0,
'TREATMENT-I': 1,
'TREATMENT-B': 2,
'BODY-B': 3,
'BODY-I': 4,
'SIGNS-I': 5,
'SIGNS-B': 6,
'CHECK-B': 7,
'CHECK-I': 8,
'DISEASE-I': 9,
'DISEASE-B': 10
}
self.label_dict = {j:i for i,j in self.class_dict.items()}
self.EMBEDDING_DIM = 300
self.EPOCHS = 10
self.BATCH_SIZE = 128
self.NUM_CLASSES = len(self.class_dict)
self.VOCAB_SIZE = len(self.word_dict)
self.TIME_STAMPS = 150
self.embedding_matrix = self.build_embedding_matrix()
self.model = self.tokenvec_bilstm2_crf_model()
self.model.load_weights(self.model_path)
'加载词表'
def load_worddict(self):
vocabs = [line.strip() for line in open(self.vocab_path)]
word_dict = {wd: index for index, wd in enumerate(vocabs)}
return word_dict
'''构造输入,转换成所需形式'''
def build_input(self, text):
x = []
for char in text:
if char not in self.word_dict:
char = 'UNK'
x.append(self.word_dict.get(char))
x = pad_sequences([x], self.TIME_STAMPS)
return x
def predict(self, text):
str = self.build_input(text)
raw = self.model.predict(str)[0][-self.TIME_STAMPS:]
result = [np.argmax(row) for row in raw]
chars = [i for i in text]
tags = [self.label_dict[i] for i in result][len(result)-len(text):]
res = list(zip(chars, tags))
print(res)
return res
'''加载预训练词向量'''
def load_pretrained_embedding(self):
embeddings_dict = {}
with open(self.embedding_file, 'r') as f:
for line in f:
values = line.strip().split(' ')
if len(values) < 300:
continue
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
embeddings_dict[word] = coefs
print('Found %s word vectors.' % len(embeddings_dict))
return embeddings_dict
'''加载词向量矩阵'''
def build_embedding_matrix(self):
embedding_dict = self.load_pretrained_embedding()
embedding_matrix = np.zeros((self.VOCAB_SIZE + 1, self.EMBEDDING_DIM))
for word, i in self.word_dict.items():
embedding_vector = embedding_dict.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
return embedding_matrix
'''使用预训练向量进行模型训练'''
def tokenvec_bilstm2_crf_model(self):
model = Sequential()
embedding_layer = Embedding(self.VOCAB_SIZE + 1,
self.EMBEDDING_DIM,
weights=[self.embedding_matrix],
input_length=self.TIME_STAMPS,
trainable=False,
mask_zero=True)
model.add(embedding_layer)
model.add(Bidirectional(LSTM(128, return_sequences=True)))
model.add(Dropout(0.5))
model.add(Bidirectional(LSTM(64, return_sequences=True)))
model.add(Dropout(0.5))
model.add(TimeDistributed(Dense(self.NUM_CLASSES)))
crf_layer = CRF(self.NUM_CLASSES, sparse_target=True)
model.add(crf_layer)
model.compile('adam', loss=crf_layer.loss_function, metrics=[crf_layer.accuracy])
model.summary()
return model
if __name__ == '__main__':
ner = LSTMNER()
while 1:
s = input('enter an sent:').strip()
ner.predict(s)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。