3 Star 2 Fork 0

Gitee 极速下载/sharpmask

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
此仓库是为了提升国内下载速度的镜像仓库,每日同步一次。 原始仓库: https://github.com/facebookresearch/deepmask
克隆/下载
evalPerImage.lua 6.42 KB
一键复制 编辑 原始数据 按行查看 历史
--[[----------------------------------------------------------------------------
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
This source code is licensed under the BSD-style license found in the
LICENSE file in the root directory of this source tree. An additional grant
of patent rights can be found in the PATENTS file in the same directory.
Full scene evaluation of DeepMask/SharpMask
------------------------------------------------------------------------------]]
require 'torch'
require 'cutorch'
require 'image'
local cjson = require 'cjson'
local tds = require 'tds'
local coco = require 'coco'
paths.dofile('DeepMask.lua')
paths.dofile('SharpMask.lua')
--------------------------------------------------------------------------------
-- parse arguments
local cmd = torch.CmdLine()
cmd:text()
cmd:text('full scene evaluation of DeepMask/SharpMask')
cmd:text()
cmd:argument('-model', 'model to load')
cmd:text('Options:')
cmd:option('-datadir', 'data/', 'data directory')
cmd:option('-seed', 1, 'manually set RNG seed')
cmd:option('-gpu', 1, 'gpu device')
cmd:option('-split', 'val', 'dataset split to be used (train/val)')
cmd:option('-np', 500,'number of proposals')
cmd:option('-thr', .2, 'mask binary threshold')
cmd:option('-save', false, 'save top proposals')
cmd:option('-startAt', 1, 'start image id')
cmd:option('-endAt', 5000, 'end image id')
cmd:option('-smin', -2.5, 'min scale')
cmd:option('-smax', .5, 'max scale')
cmd:option('-sstep', .5, 'scale step')
cmd:option('-timer', false, 'breakdown timer')
cmd:option('-dm', false, 'use DeepMask version of SharpMask')
local config = cmd:parse(arg)
--------------------------------------------------------------------------------
-- various initializations
torch.setdefaulttensortype('torch.FloatTensor')
cutorch.setDevice(config.gpu)
torch.manualSeed(config.seed)
math.randomseed(config.seed)
local maskApi = coco.MaskApi
local meanstd = {mean={ 0.485, 0.456, 0.406 }, std={ 0.229, 0.224, 0.225 }}
--------------------------------------------------------------------------------
-- load model and config
print('| loading model file... ' .. config.model)
local m = torch.load(config.model..'/model.t7')
local c = m.config
for k,v in pairs(c) do if config[k] == nil then config[k] = v end end
local epoch = 0
if paths.filep(config.model..'/log') then
for line in io.lines(config.model..'/log') do
if string.find(line,'train') then epoch = epoch + 1 end
end
print(string.format('| number of examples seen until now: %d (%d epochs)',
epoch*config.maxload*config.batch,epoch))
end
local model = m.model
model:inference(config.np)
model:cuda()
--------------------------------------------------------------------------------
-- directory to save results
local savedir = string.format('%s/epoch=%d/',config.model,epoch)
print(string.format('| saving results results in %s',savedir))
os.execute(string.format('mkdir -p %s',savedir))
os.execute(string.format('mkdir -p %s/t7',savedir))
os.execute(string.format('mkdir -p %s/jsons',savedir))
if config.save then os.execute(string.format('mkdir -p %s/res',savedir)) end
--------------------------------------------------------------------------------
-- create inference module
local scales = {}
for i = config.smin,config.smax,config.sstep do table.insert(scales,2^i) end
if torch.type(model)=='nn.DeepMask' then
paths.dofile('InferDeepMask.lua')
elseif torch.type(model)=='nn.SharpMask' then
paths.dofile('InferSharpMask.lua')
end
local infer = Infer{
np = config.np,
scales = scales,
meanstd = meanstd,
model = model,
iSz = config.iSz,
dm = config.dm,
timer = config.timer,
}
--------------------------------------------------------------------------------
-- get list of eval images
local annFile = string.format('%s/annotations/instances_%s2014.json',
config.datadir,config.split)
local coco = coco.CocoApi(annFile)
local imgIds = coco:getImgIds()
imgIds,_ = imgIds:sort()
--------------------------------------------------------------------------------
-- function: encode proposals
local function encodeProps(props,np,img,k,masks,scores)
local t = (k-1)*np
local enc = maskApi.encode(masks)
for i = 1, np do
local elem = tds.Hash()
elem.segmentation = tds.Hash(enc[i])
elem.image_id=img.id
elem.category_id=1
elem.score=scores[i][1]
props[t+i] = elem
end
end
--------------------------------------------------------------------------------
-- function: convert props to json and save
local function saveProps(props,savedir,s,e)
--t7
local pathsvt7 = string.format('%s/t7/props-%d-%d.t7', savedir,s,e)
torch.save(pathsvt7,props)
--json
local pathsvjson = string.format('%s/jsons/props-%d-%d.json', savedir,s,e)
local propsjson = {}
for _,prop in pairs(props) do -- hash2table
local elem = {}
elem.category_id = prop.category_id
elem.image_id = prop.image_id
elem.score = prop.score
elem.segmentation={
size={prop.segmentation.size[1],prop.segmentation.size[2]},
counts = prop.segmentation.counts or prop.segmentation.count
}
table.insert(propsjson,elem)
end
local jsonText = cjson.encode(propsjson)
local f = io.open(pathsvjson,'w'); f:write(jsonText); f:close()
collectgarbage()
end
--------------------------------------------------------------------------------
-- function: read image
local function readImg(datadir,split,fileName)
local pathImg = string.format('%s/%s2014/%s',datadir,split,fileName)
local inp = image.load(pathImg,3)
return inp
end
--------------------------------------------------------------------------------
-- run
print('| start eval')
local props, svcount = tds.Hash(), config.startAt
for k = config.startAt,config.endAt do
xlua.progress(k,config.endAt)
-- load image
local img = coco:loadImgs(imgIds[k])[1]
local input = readImg(config.datadir,config.split,img.file_name)
local h,w = img.height,img.width
-- forward all scales
infer:forward(input)
-- get top proposals
local masks,scores = infer:getTopProps(config.thr,h,w)
-- encode proposals
encodeProps(props,config.np,img,k,masks,scores)
-- save top masks?
if config.save then
local res = input:clone()
maskApi.drawMasks(res, masks, 10)
image.save(string.format('%s/res/%d.jpg',savedir,k),res)
end
-- save proposals
if k%500 == 0 then
saveProps(props,savedir,svcount,k); props = tds.Hash(); collectgarbage()
svcount = svcount + 500
end
collectgarbage()
end
if config.timer then infer:printTiming() end
collectgarbage()
print('| finish')
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mirrors/sharpmask.git
git@gitee.com:mirrors/sharpmask.git
mirrors
sharpmask
sharpmask
master

搜索帮助