代码拉取完成,页面将自动刷新
# Welcome to the PyTorch setup.py.
# Environment variables you are probably interested in:
#
# DEBUG
# build with -O0 and -g (debug symbols)
#
# REL_WITH_DEB_INFO
# build with optimizations and -g (debug symbols)
#
# USE_CUSTOM_DEBINFO="path/to/file1.cpp;path/to/file2.cpp"
# build with debug info only for specified files
#
# MAX_JOBS
# maximum number of compile jobs we should use to compile your code
#
# USE_CUDA=0
# disables CUDA build
#
# CFLAGS
# flags to apply to both C and C++ files to be compiled (a quirk of setup.py
# which we have faithfully adhered to in our build system is that CFLAGS
# also applies to C++ files (unless CXXFLAGS is set), in contrast to the
# default behavior of autogoo and cmake build systems.)
#
# CC
# the C/C++ compiler to use
#
# Environment variables for feature toggles:
#
# DEBUG_CUDA=1
# if used in conjunction with DEBUG or REL_WITH_DEB_INFO, will also
# build CUDA kernels with -lineinfo --source-in-ptx. Note that
# on CUDA 12 this may cause nvcc to OOM, so this is disabled by default.
# USE_CUDNN=0
# disables the cuDNN build
#
# USE_CUSPARSELT=0
# disables the cuSPARSELt build
#
# USE_FBGEMM=0
# disables the FBGEMM build
#
# USE_KINETO=0
# disables usage of libkineto library for profiling
#
# USE_NUMPY=0
# disables the NumPy build
#
# BUILD_TEST=0
# disables the test build
#
# USE_MKLDNN=0
# disables use of MKLDNN
#
# USE_MKLDNN_ACL
# enables use of Compute Library backend for MKLDNN on Arm;
# USE_MKLDNN must be explicitly enabled.
#
# MKLDNN_CPU_RUNTIME
# MKL-DNN threading mode: TBB or OMP (default)
#
# USE_STATIC_MKL
# Prefer to link with MKL statically - Unix only
# USE_ITT=0
# disable use of Intel(R) VTune Profiler's ITT functionality
#
# USE_NNPACK=0
# disables NNPACK build
#
# USE_QNNPACK=0
# disables QNNPACK build (quantized 8-bit operators)
#
# USE_DISTRIBUTED=0
# disables distributed (c10d, gloo, mpi, etc.) build
#
# USE_TENSORPIPE=0
# disables distributed Tensorpipe backend build
#
# USE_GLOO=0
# disables distributed gloo backend build
#
# USE_MPI=0
# disables distributed MPI backend build
#
# USE_SYSTEM_NCCL=0
# disables use of system-wide nccl (we will use our submoduled
# copy in third_party/nccl)
#
# USE_OPENMP=0
# disables use of OpenMP for parallelization
#
# USE_FLASH_ATTENTION=0
# disables building flash attention for scaled dot product attention
#
# USE_MEM_EFF_ATTENTION=0
# disables building memory efficient attention for scaled dot product attention
#
# BUILD_BINARY
# enables the additional binaries/ build
#
# ATEN_AVX512_256=TRUE
# ATen AVX2 kernels can use 32 ymm registers, instead of the default 16.
# This option can be used if AVX512 doesn't perform well on a machine.
# The FBGEMM library also uses AVX512_256 kernels on Xeon D processors,
# but it also has some (optimized) assembly code.
#
# PYTORCH_BUILD_VERSION
# PYTORCH_BUILD_NUMBER
# specify the version of PyTorch, rather than the hard-coded version
# in this file; used when we're building binaries for distribution
#
# TORCH_CUDA_ARCH_LIST
# specify which CUDA architectures to build for.
# ie `TORCH_CUDA_ARCH_LIST="6.0;7.0"`
# These are not CUDA versions, instead, they specify what
# classes of NVIDIA hardware we should generate PTX for.
#
# PYTORCH_ROCM_ARCH
# specify which AMD GPU targets to build for.
# ie `PYTORCH_ROCM_ARCH="gfx900;gfx906"`
#
# ONNX_NAMESPACE
# specify a namespace for ONNX built here rather than the hard-coded
# one in this file; needed to build with other frameworks that share ONNX.
#
# BLAS
# BLAS to be used by Caffe2. Can be MKL, Eigen, ATLAS, FlexiBLAS, or OpenBLAS. If set
# then the build will fail if the requested BLAS is not found, otherwise
# the BLAS will be chosen based on what is found on your system.
#
# MKL_THREADING
# MKL threading mode: SEQ, TBB or OMP (default)
#
# USE_ROCM_KERNEL_ASSERT=1
# Enable kernel assert in ROCm platform
#
# Environment variables we respect (these environment variables are
# conventional and are often understood/set by other software.)
#
# CUDA_HOME (Linux/OS X)
# CUDA_PATH (Windows)
# specify where CUDA is installed; usually /usr/local/cuda or
# /usr/local/cuda-x.y
# CUDAHOSTCXX
# specify a different compiler than the system one to use as the CUDA
# host compiler for nvcc.
#
# CUDA_NVCC_EXECUTABLE
# Specify a NVCC to use. This is used in our CI to point to a cached nvcc
#
# CUDNN_LIB_DIR
# CUDNN_INCLUDE_DIR
# CUDNN_LIBRARY
# specify where cuDNN is installed
#
# MIOPEN_LIB_DIR
# MIOPEN_INCLUDE_DIR
# MIOPEN_LIBRARY
# specify where MIOpen is installed
#
# NCCL_ROOT
# NCCL_LIB_DIR
# NCCL_INCLUDE_DIR
# specify where nccl is installed
#
# NVTOOLSEXT_PATH (Windows only)
# specify where nvtoolsext is installed
#
# ACL_ROOT_DIR
# specify where Compute Library is installed
#
# LIBRARY_PATH
# LD_LIBRARY_PATH
# we will search for libraries in these paths
#
# ATEN_THREADING
# ATen parallel backend to use for intra- and inter-op parallelism
# possible values:
# OMP - use OpenMP for intra-op and native backend for inter-op tasks
# NATIVE - use native thread pool for both intra- and inter-op tasks
#
# USE_SYSTEM_LIBS (work in progress)
# Use system-provided libraries to satisfy the build dependencies.
# When turned on, the following cmake variables will be toggled as well:
# USE_SYSTEM_CPUINFO=ON USE_SYSTEM_SLEEF=ON BUILD_CUSTOM_PROTOBUF=OFF
#
# USE_MIMALLOC
# Static link mimalloc into C10, and use mimalloc in alloc_cpu & alloc_free.
# By default, It is only enabled on Windows.
#
# USE_PRIORITIZED_TEXT_FOR_LD
# Uses prioritized text form cmake/prioritized_text.txt for LD
#
# BUILD_LIBTORCH_WHL
# Builds libtorch.so and its dependencies as a wheel
#
# BUILD_PYTHON_ONLY
# Builds pytorch as a wheel using libtorch.so from a seperate wheel
import os
import sys
if sys.platform == "win32" and sys.maxsize.bit_length() == 31:
print(
"32-bit Windows Python runtime is not supported. Please switch to 64-bit Python."
)
sys.exit(-1)
import platform
BUILD_LIBTORCH_WHL = os.getenv("BUILD_LIBTORCH_WHL", "0") == "1"
BUILD_PYTHON_ONLY = os.getenv("BUILD_PYTHON_ONLY", "0") == "1"
python_min_version = (3, 8, 0)
python_min_version_str = ".".join(map(str, python_min_version))
if sys.version_info < python_min_version:
print(
f"You are using Python {platform.python_version()}. Python >={python_min_version_str} is required."
)
sys.exit(-1)
import filecmp
import glob
import importlib
import importlib.util
import json
import shutil
import subprocess
import sysconfig
import time
from collections import defaultdict
import setuptools.command.build_ext
import setuptools.command.install
import setuptools.command.sdist
from setuptools import Extension, find_packages, setup
from setuptools.dist import Distribution
from tools.build_pytorch_libs import build_caffe2
from tools.generate_torch_version import get_torch_version
from tools.setup_helpers.cmake import CMake
from tools.setup_helpers.env import build_type, IS_DARWIN, IS_LINUX, IS_WINDOWS
from tools.setup_helpers.generate_linker_script import gen_linker_script
def _get_package_path(package_name):
spec = importlib.util.find_spec(package_name)
if spec:
# The package might be a namespace package, so get_data may fail
try:
loader = spec.loader
if loader is not None:
file_path = loader.get_filename() # type: ignore[attr-defined]
return os.path.dirname(file_path)
except AttributeError:
pass
return None
# set up appropriate env variables
if BUILD_LIBTORCH_WHL:
# Set up environment variables for ONLY building libtorch.so and not libtorch_python.so
# functorch is not supported without python
os.environ["BUILD_FUNCTORCH"] = "OFF"
if BUILD_PYTHON_ONLY:
os.environ["BUILD_LIBTORCHLESS"] = "ON"
os.environ["LIBTORCH_LIB_PATH"] = f"{_get_package_path('torch')}/lib"
################################################################################
# Parameters parsed from environment
################################################################################
VERBOSE_SCRIPT = True
RUN_BUILD_DEPS = True
# see if the user passed a quiet flag to setup.py arguments and respect
# that in our parts of the build
EMIT_BUILD_WARNING = False
RERUN_CMAKE = False
CMAKE_ONLY = False
filtered_args = []
for i, arg in enumerate(sys.argv):
if arg == "--cmake":
RERUN_CMAKE = True
continue
if arg == "--cmake-only":
# Stop once cmake terminates. Leave users a chance to adjust build
# options.
CMAKE_ONLY = True
continue
if arg == "rebuild" or arg == "build":
arg = "build" # rebuild is gone, make it build
EMIT_BUILD_WARNING = True
if arg == "--":
filtered_args += sys.argv[i:]
break
if arg == "-q" or arg == "--quiet":
VERBOSE_SCRIPT = False
if arg in ["clean", "egg_info", "sdist"]:
RUN_BUILD_DEPS = False
filtered_args.append(arg)
sys.argv = filtered_args
if VERBOSE_SCRIPT:
def report(*args):
print(*args)
else:
def report(*args):
pass
# Make distutils respect --quiet too
setuptools.distutils.log.warn = report
# Constant known variables used throughout this file
cwd = os.path.dirname(os.path.abspath(__file__))
lib_path = os.path.join(cwd, "torch", "lib")
third_party_path = os.path.join(cwd, "third_party")
caffe2_build_dir = os.path.join(cwd, "build")
# CMAKE: full path to python library
if IS_WINDOWS:
cmake_python_library = "{}/libs/python{}.lib".format(
sysconfig.get_config_var("prefix"), sysconfig.get_config_var("VERSION")
)
# Fix virtualenv builds
if not os.path.exists(cmake_python_library):
cmake_python_library = "{}/libs/python{}.lib".format(
sys.base_prefix, sysconfig.get_config_var("VERSION")
)
else:
cmake_python_library = "{}/{}".format(
sysconfig.get_config_var("LIBDIR"), sysconfig.get_config_var("INSTSONAME")
)
cmake_python_include_dir = sysconfig.get_path("include")
################################################################################
# Version, create_version_file, and package_name
################################################################################
package_name = os.getenv("TORCH_PACKAGE_NAME", "torch")
LIBTORCH_PKG_NAME = os.getenv("LIBTORCH_PACKAGE_NAME", "torch_no_python")
if BUILD_LIBTORCH_WHL:
package_name = LIBTORCH_PKG_NAME
package_type = os.getenv("PACKAGE_TYPE", "wheel")
version = get_torch_version()
report(f"Building wheel {package_name}-{version}")
cmake = CMake()
def get_submodule_folders():
git_modules_path = os.path.join(cwd, ".gitmodules")
default_modules_path = [
os.path.join(third_party_path, name)
for name in [
"gloo",
"cpuinfo",
"onnx",
"foxi",
"QNNPACK",
"fbgemm",
"cutlass",
]
]
if not os.path.exists(git_modules_path):
return default_modules_path
with open(git_modules_path) as f:
return [
os.path.join(cwd, line.split("=", 1)[1].strip())
for line in f
if line.strip().startswith("path")
]
def check_submodules():
def check_for_files(folder, files):
if not any(os.path.exists(os.path.join(folder, f)) for f in files):
report("Could not find any of {} in {}".format(", ".join(files), folder))
report("Did you run 'git submodule update --init --recursive'?")
sys.exit(1)
def not_exists_or_empty(folder):
return not os.path.exists(folder) or (
os.path.isdir(folder) and len(os.listdir(folder)) == 0
)
if bool(os.getenv("USE_SYSTEM_LIBS", False)):
return
folders = get_submodule_folders()
# If none of the submodule folders exists, try to initialize them
if all(not_exists_or_empty(folder) for folder in folders):
try:
print(" --- Trying to initialize submodules")
start = time.time()
subprocess.check_call(
["git", "submodule", "update", "--init", "--recursive"], cwd=cwd
)
end = time.time()
print(f" --- Submodule initialization took {end - start:.2f} sec")
except Exception:
print(" --- Submodule initalization failed")
print("Please run:\n\tgit submodule update --init --recursive")
sys.exit(1)
for folder in folders:
check_for_files(
folder,
[
"CMakeLists.txt",
"Makefile",
"setup.py",
"LICENSE",
"LICENSE.md",
"LICENSE.txt",
],
)
check_for_files(
os.path.join(third_party_path, "fbgemm", "third_party", "asmjit"),
["CMakeLists.txt"],
)
check_for_files(
os.path.join(third_party_path, "onnx", "third_party", "benchmark"),
["CMakeLists.txt"],
)
# Windows has very bad support for symbolic links.
# Instead of using symlinks, we're going to copy files over
def mirror_files_into_torchgen():
# (new_path, orig_path)
# Directories are OK and are recursively mirrored.
paths = [
(
"torchgen/packaged/ATen/native/native_functions.yaml",
"aten/src/ATen/native/native_functions.yaml",
),
("torchgen/packaged/ATen/native/tags.yaml", "aten/src/ATen/native/tags.yaml"),
("torchgen/packaged/ATen/templates", "aten/src/ATen/templates"),
("torchgen/packaged/autograd", "tools/autograd"),
("torchgen/packaged/autograd/templates", "tools/autograd/templates"),
]
for new_path, orig_path in paths:
# Create the dirs involved in new_path if they don't exist
if not os.path.exists(new_path):
os.makedirs(os.path.dirname(new_path), exist_ok=True)
# Copy the files from the orig location to the new location
if os.path.isfile(orig_path):
shutil.copyfile(orig_path, new_path)
continue
if os.path.isdir(orig_path):
if os.path.exists(new_path):
# copytree fails if the tree exists already, so remove it.
shutil.rmtree(new_path)
shutil.copytree(orig_path, new_path)
continue
raise RuntimeError("Check the file paths in `mirror_files_into_torchgen()`")
# all the work we need to do _before_ setup runs
def build_deps():
report("-- Building version " + version)
check_submodules()
check_pydep("yaml", "pyyaml")
build_python = not BUILD_LIBTORCH_WHL
build_caffe2(
version=version,
cmake_python_library=cmake_python_library,
build_python=build_python,
rerun_cmake=RERUN_CMAKE,
cmake_only=CMAKE_ONLY,
cmake=cmake,
)
if CMAKE_ONLY:
report(
'Finished running cmake. Run "ccmake build" or '
'"cmake-gui build" to adjust build options and '
'"python setup.py install" to build.'
)
sys.exit()
# Use copies instead of symbolic files.
# Windows has very poor support for them.
sym_files = [
"tools/shared/_utils_internal.py",
"torch/utils/benchmark/utils/valgrind_wrapper/callgrind.h",
"torch/utils/benchmark/utils/valgrind_wrapper/valgrind.h",
]
orig_files = [
"torch/_utils_internal.py",
"third_party/valgrind-headers/callgrind.h",
"third_party/valgrind-headers/valgrind.h",
]
for sym_file, orig_file in zip(sym_files, orig_files):
same = False
if os.path.exists(sym_file):
if filecmp.cmp(sym_file, orig_file):
same = True
else:
os.remove(sym_file)
if not same:
shutil.copyfile(orig_file, sym_file)
################################################################################
# Building dependent libraries
################################################################################
missing_pydep = """
Missing build dependency: Unable to `import {importname}`.
Please install it via `conda install {module}` or `pip install {module}`
""".strip()
def check_pydep(importname, module):
try:
importlib.import_module(importname)
except ImportError as e:
raise RuntimeError(
missing_pydep.format(importname=importname, module=module)
) from e
class build_ext(setuptools.command.build_ext.build_ext):
def _embed_libomp(self):
# Copy libiomp5.dylib/libomp.dylib inside the wheel package on MacOS
lib_dir = os.path.join(self.build_lib, "torch", "lib")
libtorch_cpu_path = os.path.join(lib_dir, "libtorch_cpu.dylib")
if not os.path.exists(libtorch_cpu_path):
return
# Parse libtorch_cpu load commands
otool_cmds = (
subprocess.check_output(["otool", "-l", libtorch_cpu_path])
.decode("utf-8")
.split("\n")
)
rpaths, libs = [], []
for idx, line in enumerate(otool_cmds):
if line.strip() == "cmd LC_LOAD_DYLIB":
lib_name = otool_cmds[idx + 2].strip()
assert lib_name.startswith("name ")
libs.append(lib_name.split(" ", 1)[1].rsplit("(", 1)[0][:-1])
if line.strip() == "cmd LC_RPATH":
rpath = otool_cmds[idx + 2].strip()
assert rpath.startswith("path ")
rpaths.append(rpath.split(" ", 1)[1].rsplit("(", 1)[0][:-1])
omp_lib_name = (
"libomp.dylib" if os.uname().machine == "arm64" else "libiomp5.dylib"
)
omp_rpath_lib_path = os.path.join("@rpath", omp_lib_name)
if omp_rpath_lib_path not in libs:
return
# Copy libomp/libiomp5 from rpath locations
for rpath in rpaths:
source_lib = os.path.join(rpath, omp_lib_name)
if not os.path.exists(source_lib):
continue
target_lib = os.path.join(self.build_lib, "torch", "lib", omp_lib_name)
self.copy_file(source_lib, target_lib)
# Delete old rpath and add @loader_lib to the rpath
# This should prevent delocate from attempting to package another instance
# of OpenMP library in torch wheel as well as loading two libomp.dylib into
# the address space, as libraries are cached by their unresolved names
subprocess.check_call(
[
"install_name_tool",
"-rpath",
rpath,
"@loader_path",
libtorch_cpu_path,
]
)
break
# Copy omp.h from OpenMP_C_FLAGS and copy it into include folder
omp_cflags = get_cmake_cache_vars()["OpenMP_C_FLAGS"]
if not omp_cflags:
return
for include_dir in [f[2:] for f in omp_cflags.split(" ") if f.startswith("-I")]:
omp_h = os.path.join(include_dir, "omp.h")
if not os.path.exists(omp_h):
continue
target_omp_h = os.path.join(self.build_lib, "torch", "include", "omp.h")
self.copy_file(omp_h, target_omp_h)
break
def run(self):
# Report build options. This is run after the build completes so # `CMakeCache.txt` exists and we can get an
# accurate report on what is used and what is not.
cmake_cache_vars = defaultdict(lambda: False, cmake.get_cmake_cache_variables())
if cmake_cache_vars["USE_NUMPY"]:
report("-- Building with NumPy bindings")
else:
report("-- NumPy not found")
if cmake_cache_vars["USE_CUDNN"]:
report(
"-- Detected cuDNN at "
+ cmake_cache_vars["CUDNN_LIBRARY"]
+ ", "
+ cmake_cache_vars["CUDNN_INCLUDE_DIR"]
)
else:
report("-- Not using cuDNN")
if cmake_cache_vars["USE_CUDA"]:
report("-- Detected CUDA at " + cmake_cache_vars["CUDA_TOOLKIT_ROOT_DIR"])
else:
report("-- Not using CUDA")
if cmake_cache_vars["USE_XPU"]:
report("-- Detected XPU runtime at " + cmake_cache_vars["SYCL_LIBRARY_DIR"])
else:
report("-- Not using XPU")
if cmake_cache_vars["USE_MKLDNN"]:
report("-- Using MKLDNN")
if cmake_cache_vars["USE_MKLDNN_ACL"]:
report("-- Using Compute Library for the Arm architecture with MKLDNN")
else:
report(
"-- Not using Compute Library for the Arm architecture with MKLDNN"
)
if cmake_cache_vars["USE_MKLDNN_CBLAS"]:
report("-- Using CBLAS in MKLDNN")
else:
report("-- Not using CBLAS in MKLDNN")
else:
report("-- Not using MKLDNN")
if cmake_cache_vars["USE_NCCL"] and cmake_cache_vars["USE_SYSTEM_NCCL"]:
report(
"-- Using system provided NCCL library at {}, {}".format(
cmake_cache_vars["NCCL_LIBRARIES"],
cmake_cache_vars["NCCL_INCLUDE_DIRS"],
)
)
elif cmake_cache_vars["USE_NCCL"]:
report("-- Building NCCL library")
else:
report("-- Not using NCCL")
if cmake_cache_vars["USE_DISTRIBUTED"]:
if IS_WINDOWS:
report("-- Building without distributed package")
else:
report("-- Building with distributed package: ")
report(
" -- USE_TENSORPIPE={}".format(cmake_cache_vars["USE_TENSORPIPE"])
)
report(" -- USE_GLOO={}".format(cmake_cache_vars["USE_GLOO"]))
report(" -- USE_MPI={}".format(cmake_cache_vars["USE_OPENMPI"]))
else:
report("-- Building without distributed package")
if cmake_cache_vars["STATIC_DISPATCH_BACKEND"]:
report(
"-- Using static dispatch with backend {}".format(
cmake_cache_vars["STATIC_DISPATCH_BACKEND"]
)
)
if cmake_cache_vars["USE_LIGHTWEIGHT_DISPATCH"]:
report("-- Using lightweight dispatch")
if cmake_cache_vars["BUILD_EXECUTORCH"]:
report("-- Building Executorch")
if cmake_cache_vars["USE_ITT"]:
report("-- Using ITT")
else:
report("-- Not using ITT")
# Do not use clang to compile extensions if `-fstack-clash-protection` is defined
# in system CFLAGS
c_flags = str(os.getenv("CFLAGS", ""))
if (
IS_LINUX
and "-fstack-clash-protection" in c_flags
and "clang" in os.environ.get("CC", "")
):
os.environ["CC"] = str(os.environ["CC"])
# It's an old-style class in Python 2.7...
setuptools.command.build_ext.build_ext.run(self)
if IS_DARWIN and package_type != "conda":
self._embed_libomp()
# Copy the essential export library to compile C++ extensions.
if IS_WINDOWS:
build_temp = self.build_temp
ext_filename = self.get_ext_filename("_C")
lib_filename = ".".join(ext_filename.split(".")[:-1]) + ".lib"
export_lib = os.path.join(
build_temp, "torch", "csrc", lib_filename
).replace("\\", "/")
build_lib = self.build_lib
target_lib = os.path.join(build_lib, "torch", "lib", "_C.lib").replace(
"\\", "/"
)
# Create "torch/lib" directory if not exists.
# (It is not created yet in "develop" mode.)
target_dir = os.path.dirname(target_lib)
if not os.path.exists(target_dir):
os.makedirs(target_dir)
self.copy_file(export_lib, target_lib)
def build_extensions(self):
self.create_compile_commands()
# The caffe2 extensions are created in
# tmp_install/lib/pythonM.m/site-packages/caffe2/python/
# and need to be copied to build/lib.linux.... , which will be a
# platform dependent build folder created by the "build" command of
# setuptools. Only the contents of this folder are installed in the
# "install" command by default.
# We only make this copy for Caffe2's pybind extensions
caffe2_pybind_exts = [
"caffe2.python.caffe2_pybind11_state",
"caffe2.python.caffe2_pybind11_state_gpu",
"caffe2.python.caffe2_pybind11_state_hip",
]
if BUILD_LIBTORCH_WHL:
caffe2_pybind_exts = []
i = 0
while i < len(self.extensions):
ext = self.extensions[i]
if ext.name not in caffe2_pybind_exts:
i += 1
continue
fullname = self.get_ext_fullname(ext.name)
filename = self.get_ext_filename(fullname)
report(f"\nCopying extension {ext.name}")
relative_site_packages = (
sysconfig.get_path("purelib")
.replace(sysconfig.get_path("data"), "")
.lstrip(os.path.sep)
)
src = os.path.join("torch", relative_site_packages, filename)
if not os.path.exists(src):
report(f"{src} does not exist")
del self.extensions[i]
else:
dst = os.path.join(os.path.realpath(self.build_lib), filename)
report(f"Copying {ext.name} from {src} to {dst}")
dst_dir = os.path.dirname(dst)
if not os.path.exists(dst_dir):
os.makedirs(dst_dir)
self.copy_file(src, dst)
i += 1
# Copy functorch extension
for i, ext in enumerate(self.extensions):
if ext.name != "functorch._C":
continue
fullname = self.get_ext_fullname(ext.name)
filename = self.get_ext_filename(fullname)
fileext = os.path.splitext(filename)[1]
src = os.path.join(os.path.dirname(filename), "functorch" + fileext)
dst = os.path.join(os.path.realpath(self.build_lib), filename)
if os.path.exists(src):
report(f"Copying {ext.name} from {src} to {dst}")
dst_dir = os.path.dirname(dst)
if not os.path.exists(dst_dir):
os.makedirs(dst_dir)
self.copy_file(src, dst)
setuptools.command.build_ext.build_ext.build_extensions(self)
def get_outputs(self):
outputs = setuptools.command.build_ext.build_ext.get_outputs(self)
outputs.append(os.path.join(self.build_lib, "caffe2"))
report(f"setup.py::get_outputs returning {outputs}")
return outputs
def create_compile_commands(self):
def load(filename):
with open(filename) as f:
return json.load(f)
ninja_files = glob.glob("build/*compile_commands.json")
cmake_files = glob.glob("torch/lib/build/*/compile_commands.json")
all_commands = [entry for f in ninja_files + cmake_files for entry in load(f)]
# cquery does not like c++ compiles that start with gcc.
# It forgets to include the c++ header directories.
# We can work around this by replacing the gcc calls that python
# setup.py generates with g++ calls instead
for command in all_commands:
if command["command"].startswith("gcc "):
command["command"] = "g++ " + command["command"][4:]
new_contents = json.dumps(all_commands, indent=2)
contents = ""
if os.path.exists("compile_commands.json"):
with open("compile_commands.json") as f:
contents = f.read()
if contents != new_contents:
with open("compile_commands.json", "w") as f:
f.write(new_contents)
class concat_license_files:
"""Merge LICENSE and LICENSES_BUNDLED.txt as a context manager
LICENSE is the main PyTorch license, LICENSES_BUNDLED.txt is auto-generated
from all the licenses found in ./third_party/. We concatenate them so there
is a single license file in the sdist and wheels with all of the necessary
licensing info.
"""
def __init__(self, include_files=False):
self.f1 = "LICENSE"
self.f2 = "third_party/LICENSES_BUNDLED.txt"
self.include_files = include_files
def __enter__(self):
"""Concatenate files"""
old_path = sys.path
sys.path.append(third_party_path)
try:
from build_bundled import create_bundled
finally:
sys.path = old_path
with open(self.f1) as f1:
self.bsd_text = f1.read()
with open(self.f1, "a") as f1:
f1.write("\n\n")
create_bundled(
os.path.relpath(third_party_path), f1, include_files=self.include_files
)
def __exit__(self, exception_type, exception_value, traceback):
"""Restore content of f1"""
with open(self.f1, "w") as f:
f.write(self.bsd_text)
try:
from wheel.bdist_wheel import bdist_wheel
except ImportError:
# This is useful when wheel is not installed and bdist_wheel is not
# specified on the command line. If it _is_ specified, parsing the command
# line will fail before wheel_concatenate is needed
wheel_concatenate = None
else:
# Need to create the proper LICENSE.txt for the wheel
class wheel_concatenate(bdist_wheel):
"""check submodules on sdist to prevent incomplete tarballs"""
def run(self):
with concat_license_files(include_files=True):
super().run()
class install(setuptools.command.install.install):
def run(self):
super().run()
class clean(setuptools.Command):
user_options = []
def initialize_options(self):
pass
def finalize_options(self):
pass
def run(self):
import glob
import re
with open(".gitignore") as f:
ignores = f.read()
pat = re.compile(r"^#( BEGIN NOT-CLEAN-FILES )?")
for wildcard in filter(None, ignores.split("\n")):
match = pat.match(wildcard)
if match:
if match.group(1):
# Marker is found and stop reading .gitignore.
break
# Ignore lines which begin with '#'.
else:
# Don't remove absolute paths from the system
wildcard = wildcard.lstrip("./")
for filename in glob.glob(wildcard):
try:
os.remove(filename)
except OSError:
shutil.rmtree(filename, ignore_errors=True)
class sdist(setuptools.command.sdist.sdist):
def run(self):
with concat_license_files():
super().run()
def get_cmake_cache_vars():
try:
return defaultdict(lambda: False, cmake.get_cmake_cache_variables())
except FileNotFoundError:
# CMakeCache.txt does not exist. Probably running "python setup.py clean" over a clean directory.
return defaultdict(lambda: False)
def configure_extension_build():
r"""Configures extension build options according to system environment and user's choice.
Returns:
The input to parameters ext_modules, cmdclass, packages, and entry_points as required in setuptools.setup.
"""
cmake_cache_vars = get_cmake_cache_vars()
################################################################################
# Configure compile flags
################################################################################
library_dirs = []
extra_install_requires = []
if IS_WINDOWS:
# /NODEFAULTLIB makes sure we only link to DLL runtime
# and matches the flags set for protobuf and ONNX
extra_link_args = ["/NODEFAULTLIB:LIBCMT.LIB"]
# /MD links against DLL runtime
# and matches the flags set for protobuf and ONNX
# /EHsc is about standard C++ exception handling
extra_compile_args = ["/MD", "/FS", "/EHsc"]
else:
extra_link_args = []
extra_compile_args = [
"-Wall",
"-Wextra",
"-Wno-strict-overflow",
"-Wno-unused-parameter",
"-Wno-missing-field-initializers",
"-Wno-unknown-pragmas",
# Python 2.6 requires -fno-strict-aliasing, see
# http://legacy.python.org/dev/peps/pep-3123/
# We also depend on it in our code (even Python 3).
"-fno-strict-aliasing",
]
library_dirs.append(lib_path)
main_compile_args = []
main_libraries = ["torch_python"]
main_link_args = []
main_sources = ["torch/csrc/stub.c"]
if BUILD_LIBTORCH_WHL:
main_libraries = ["torch"]
main_sources = []
if build_type.is_debug():
if IS_WINDOWS:
extra_compile_args.append("/Z7")
extra_link_args.append("/DEBUG:FULL")
else:
extra_compile_args += ["-O0", "-g"]
extra_link_args += ["-O0", "-g"]
if build_type.is_rel_with_deb_info():
if IS_WINDOWS:
extra_compile_args.append("/Z7")
extra_link_args.append("/DEBUG:FULL")
else:
extra_compile_args += ["-g"]
extra_link_args += ["-g"]
# pypi cuda package that requires installation of cuda runtime, cudnn and cublas
# should be included in all wheels uploaded to pypi
pytorch_extra_install_requirements = os.getenv(
"PYTORCH_EXTRA_INSTALL_REQUIREMENTS", ""
)
if pytorch_extra_install_requirements:
report(
f"pytorch_extra_install_requirements: {pytorch_extra_install_requirements}"
)
extra_install_requires += pytorch_extra_install_requirements.split("|")
# Cross-compile for M1
if IS_DARWIN:
macos_target_arch = os.getenv("CMAKE_OSX_ARCHITECTURES", "")
if macos_target_arch in ["arm64", "x86_64"]:
macos_sysroot_path = os.getenv("CMAKE_OSX_SYSROOT")
if macos_sysroot_path is None:
macos_sysroot_path = (
subprocess.check_output(
["xcrun", "--show-sdk-path", "--sdk", "macosx"]
)
.decode("utf-8")
.strip()
)
extra_compile_args += [
"-arch",
macos_target_arch,
"-isysroot",
macos_sysroot_path,
]
extra_link_args += ["-arch", macos_target_arch]
def make_relative_rpath_args(path):
if IS_DARWIN:
return ["-Wl,-rpath,@loader_path/" + path]
elif IS_WINDOWS:
return []
else:
return ["-Wl,-rpath,$ORIGIN/" + path]
################################################################################
# Declare extensions and package
################################################################################
extensions = []
excludes = ["tools", "tools.*"]
if not cmake_cache_vars["BUILD_CAFFE2"]:
excludes.extend(["caffe2", "caffe2.*"])
if not cmake_cache_vars["BUILD_FUNCTORCH"]:
excludes.extend(["functorch", "functorch.*"])
packages = find_packages(exclude=excludes)
C = Extension(
"torch._C",
libraries=main_libraries,
sources=main_sources,
language="c",
extra_compile_args=main_compile_args + extra_compile_args,
include_dirs=[],
library_dirs=library_dirs,
extra_link_args=extra_link_args
+ main_link_args
+ make_relative_rpath_args("lib"),
)
extensions.append(C)
# These extensions are built by cmake and copied manually in build_extensions()
# inside the build_ext implementation
if cmake_cache_vars["BUILD_CAFFE2"]:
extensions.append(
Extension(name="caffe2.python.caffe2_pybind11_state", sources=[]),
)
if cmake_cache_vars["USE_CUDA"]:
extensions.append(
Extension(name="caffe2.python.caffe2_pybind11_state_gpu", sources=[]),
)
if cmake_cache_vars["USE_ROCM"]:
extensions.append(
Extension(name="caffe2.python.caffe2_pybind11_state_hip", sources=[]),
)
if cmake_cache_vars["BUILD_FUNCTORCH"]:
extensions.append(
Extension(name="functorch._C", sources=[]),
)
cmdclass = {
"bdist_wheel": wheel_concatenate,
"build_ext": build_ext,
"clean": clean,
"install": install,
"sdist": sdist,
}
entry_points = {
"console_scripts": [
"convert-caffe2-to-onnx = caffe2.python.onnx.bin.conversion:caffe2_to_onnx",
"convert-onnx-to-caffe2 = caffe2.python.onnx.bin.conversion:onnx_to_caffe2",
"torchrun = torch.distributed.run:main",
],
"torchrun.logs_specs": [
"default = torch.distributed.elastic.multiprocessing:DefaultLogsSpecs",
],
}
return extensions, cmdclass, packages, entry_points, extra_install_requires
# post run, warnings, printed at the end to make them more visible
build_update_message = """
It is no longer necessary to use the 'build' or 'rebuild' targets
To install:
$ python setup.py install
To develop locally:
$ python setup.py develop
To force cmake to re-generate native build files (off by default):
$ python setup.py develop --cmake
"""
def print_box(msg):
lines = msg.split("\n")
size = max(len(l) + 1 for l in lines)
print("-" * (size + 2))
for l in lines:
print("|{}{}|".format(l, " " * (size - len(l))))
print("-" * (size + 2))
def main():
if BUILD_LIBTORCH_WHL and BUILD_PYTHON_ONLY:
raise RuntimeError(
"Conflict: 'BUILD_LIBTORCH_WHL' and 'BUILD_PYTHON_ONLY' can't both be 1. Set one to 0 and rerun."
)
install_requires = [
"filelock",
"typing-extensions>=4.8.0",
"sympy",
"networkx",
"jinja2",
"fsspec",
'mkl>=2021.1.1,<=2021.4.0; platform_system == "Windows"',
]
if sys.version_info >= (3, 12, 0):
install_requires.append("setuptools")
if BUILD_PYTHON_ONLY:
install_requires.append(f"{LIBTORCH_PKG_NAME}=={get_torch_version()}")
use_prioritized_text = str(os.getenv("USE_PRIORITIZED_TEXT_FOR_LD", ""))
if (
use_prioritized_text == ""
and platform.system() == "Linux"
and platform.processor() == "aarch64"
):
print_box(
"""
WARNING: we strongly recommend enabling linker script optimization for ARM + CUDA.
To do so please export USE_PRIORITIZED_TEXT_FOR_LD=1
"""
)
if use_prioritized_text == "1" or use_prioritized_text == "True":
gen_linker_script(
filein="cmake/prioritized_text.txt", fout="cmake/linker_script.ld"
)
linker_script_path = os.path.abspath("cmake/linker_script.ld")
os.environ["LDFLAGS"] = os.getenv("LDFLAGS", "") + f" -T{linker_script_path}"
os.environ["CFLAGS"] = (
os.getenv("CFLAGS", "") + " -ffunction-sections -fdata-sections"
)
os.environ["CXXFLAGS"] = (
os.getenv("CXXFLAGS", "") + " -ffunction-sections -fdata-sections"
)
# Parse the command line and check the arguments before we proceed with
# building deps and setup. We need to set values so `--help` works.
dist = Distribution()
dist.script_name = os.path.basename(sys.argv[0])
dist.script_args = sys.argv[1:]
try:
dist.parse_command_line()
except setuptools.distutils.errors.DistutilsArgError as e:
print(e)
sys.exit(1)
mirror_files_into_torchgen()
if RUN_BUILD_DEPS:
build_deps()
(
extensions,
cmdclass,
packages,
entry_points,
extra_install_requires,
) = configure_extension_build()
install_requires += extra_install_requires
extras_require = {
"optree": ["optree>=0.11.0"],
"opt-einsum": ["opt-einsum>=3.3"],
}
# Read in README.md for our long_description
with open(os.path.join(cwd, "README.md"), encoding="utf-8") as f:
long_description = f.read()
version_range_max = max(sys.version_info[1], 12) + 1
torch_package_data = [
"py.typed",
"bin/*",
"test/*",
"*.pyi",
"_C/*.pyi",
"cuda/*.pyi",
"fx/*.pyi",
"optim/*.pyi",
"autograd/*.pyi",
"nn/*.pyi",
"nn/modules/*.pyi",
"nn/parallel/*.pyi",
"utils/data/*.pyi",
"utils/data/datapipes/*.pyi",
"lib/*.pdb",
"lib/*shm*",
"lib/torch_shm_manager",
"lib/*.h",
"include/*.h",
"include/ATen/*.h",
"include/ATen/cpu/*.h",
"include/ATen/cpu/vec/vec256/*.h",
"include/ATen/cpu/vec/vec256/vsx/*.h",
"include/ATen/cpu/vec/vec256/zarch/*.h",
"include/ATen/cpu/vec/vec512/*.h",
"include/ATen/cpu/vec/*.h",
"include/ATen/core/*.h",
"include/ATen/cuda/*.cuh",
"include/ATen/cuda/*.h",
"include/ATen/cuda/detail/*.cuh",
"include/ATen/cuda/detail/*.h",
"include/ATen/cuda/tunable/*.h",
"include/ATen/cudnn/*.h",
"include/ATen/functorch/*.h",
"include/ATen/ops/*.h",
"include/ATen/hip/*.cuh",
"include/ATen/hip/*.h",
"include/ATen/hip/detail/*.cuh",
"include/ATen/hip/detail/*.h",
"include/ATen/hip/impl/*.h",
"include/ATen/hip/tunable/*.h",
"include/ATen/mps/*.h",
"include/ATen/miopen/*.h",
"include/ATen/detail/*.h",
"include/ATen/native/*.h",
"include/ATen/native/cpu/*.h",
"include/ATen/native/cuda/*.h",
"include/ATen/native/cuda/*.cuh",
"include/ATen/native/hip/*.h",
"include/ATen/native/hip/*.cuh",
"include/ATen/native/mps/*.h",
"include/ATen/native/nested/*.h",
"include/ATen/native/quantized/*.h",
"include/ATen/native/quantized/cpu/*.h",
"include/ATen/native/transformers/*.h",
"include/ATen/native/sparse/*.h",
"include/ATen/native/utils/*.h",
"include/ATen/quantized/*.h",
"include/ATen/xpu/*.h",
"include/ATen/xpu/detail/*.h",
"include/caffe2/serialize/*.h",
"include/c10/*.h",
"include/c10/macros/*.h",
"include/c10/core/*.h",
"include/ATen/core/boxing/*.h",
"include/ATen/core/boxing/impl/*.h",
"include/ATen/core/dispatch/*.h",
"include/ATen/core/op_registration/*.h",
"include/c10/core/impl/*.h",
"include/c10/util/*.h",
"include/c10/cuda/*.h",
"include/c10/cuda/impl/*.h",
"include/c10/hip/*.h",
"include/c10/hip/impl/*.h",
"include/c10/xpu/*.h",
"include/c10/xpu/impl/*.h",
"include/torch/*.h",
"include/torch/csrc/*.h",
"include/torch/csrc/api/include/torch/*.h",
"include/torch/csrc/api/include/torch/data/*.h",
"include/torch/csrc/api/include/torch/data/dataloader/*.h",
"include/torch/csrc/api/include/torch/data/datasets/*.h",
"include/torch/csrc/api/include/torch/data/detail/*.h",
"include/torch/csrc/api/include/torch/data/samplers/*.h",
"include/torch/csrc/api/include/torch/data/transforms/*.h",
"include/torch/csrc/api/include/torch/detail/*.h",
"include/torch/csrc/api/include/torch/detail/ordered_dict.h",
"include/torch/csrc/api/include/torch/nn/*.h",
"include/torch/csrc/api/include/torch/nn/functional/*.h",
"include/torch/csrc/api/include/torch/nn/options/*.h",
"include/torch/csrc/api/include/torch/nn/modules/*.h",
"include/torch/csrc/api/include/torch/nn/modules/container/*.h",
"include/torch/csrc/api/include/torch/nn/parallel/*.h",
"include/torch/csrc/api/include/torch/nn/utils/*.h",
"include/torch/csrc/api/include/torch/optim/*.h",
"include/torch/csrc/api/include/torch/optim/schedulers/*.h",
"include/torch/csrc/api/include/torch/serialize/*.h",
"include/torch/csrc/autograd/*.h",
"include/torch/csrc/autograd/functions/*.h",
"include/torch/csrc/autograd/generated/*.h",
"include/torch/csrc/autograd/utils/*.h",
"include/torch/csrc/cuda/*.h",
"include/torch/csrc/distributed/c10d/*.h",
"include/torch/csrc/distributed/c10d/*.hpp",
"include/torch/csrc/distributed/rpc/*.h",
"include/torch/csrc/distributed/autograd/context/*.h",
"include/torch/csrc/distributed/autograd/functions/*.h",
"include/torch/csrc/distributed/autograd/rpc_messages/*.h",
"include/torch/csrc/dynamo/*.h",
"include/torch/csrc/inductor/*.h",
"include/torch/csrc/inductor/aoti_runner/*.h",
"include/torch/csrc/inductor/aoti_runtime/*.h",
"include/torch/csrc/inductor/aoti_torch/*.h",
"include/torch/csrc/inductor/aoti_torch/c/*.h",
"include/torch/csrc/inductor/aoti_torch/generated/*.h",
"include/torch/csrc/jit/*.h",
"include/torch/csrc/jit/backends/*.h",
"include/torch/csrc/jit/generated/*.h",
"include/torch/csrc/jit/passes/*.h",
"include/torch/csrc/jit/passes/quantization/*.h",
"include/torch/csrc/jit/passes/utils/*.h",
"include/torch/csrc/jit/runtime/*.h",
"include/torch/csrc/jit/ir/*.h",
"include/torch/csrc/jit/frontend/*.h",
"include/torch/csrc/jit/api/*.h",
"include/torch/csrc/jit/serialization/*.h",
"include/torch/csrc/jit/python/*.h",
"include/torch/csrc/jit/mobile/*.h",
"include/torch/csrc/jit/testing/*.h",
"include/torch/csrc/jit/tensorexpr/*.h",
"include/torch/csrc/jit/tensorexpr/operators/*.h",
"include/torch/csrc/jit/codegen/cuda/*.h",
"include/torch/csrc/onnx/*.h",
"include/torch/csrc/profiler/*.h",
"include/torch/csrc/profiler/orchestration/*.h",
"include/torch/csrc/profiler/standalone/*.h",
"include/torch/csrc/profiler/stubs/*.h",
"include/torch/csrc/profiler/unwind/*.h",
"include/torch/csrc/profiler/python/*.h",
"include/torch/csrc/utils/*.h",
"include/torch/csrc/tensor/*.h",
"include/torch/csrc/lazy/backend/*.h",
"include/torch/csrc/lazy/core/*.h",
"include/torch/csrc/lazy/core/internal_ops/*.h",
"include/torch/csrc/lazy/core/ops/*.h",
"include/torch/csrc/lazy/python/python_util.h",
"include/torch/csrc/lazy/ts_backend/*.h",
"include/torch/csrc/xpu/*.h",
"include/pybind11/*.h",
"include/pybind11/detail/*.h",
"include/pybind11/eigen/*.h",
"include/TH/*.h*",
"include/TH/generic/*.h*",
"include/THC/*.cuh",
"include/THC/*.h*",
"include/THC/generic/*.h",
"include/THH/*.cuh",
"include/THH/*.h*",
"include/THH/generic/*.h",
"include/sleef.h",
"_inductor/codegen/*.h",
"_inductor/codegen/aoti_runtime/*.cpp",
"_export/serde/*.yaml",
"share/cmake/ATen/*.cmake",
"share/cmake/Caffe2/*.cmake",
"share/cmake/Caffe2/public/*.cmake",
"share/cmake/Caffe2/Modules_CUDA_fix/*.cmake",
"share/cmake/Caffe2/Modules_CUDA_fix/upstream/*.cmake",
"share/cmake/Caffe2/Modules_CUDA_fix/upstream/FindCUDA/*.cmake",
"share/cmake/Gloo/*.cmake",
"share/cmake/Tensorpipe/*.cmake",
"share/cmake/Torch/*.cmake",
"utils/benchmark/utils/*.cpp",
"utils/benchmark/utils/valgrind_wrapper/*.cpp",
"utils/benchmark/utils/valgrind_wrapper/*.h",
"utils/model_dump/skeleton.html",
"utils/model_dump/code.js",
"utils/model_dump/*.mjs",
]
if not BUILD_LIBTORCH_WHL:
torch_package_data.extend(
[
"lib/libtorch_python.so",
"lib/libtorch_python.dylib",
"lib/libtorch_python.dll",
]
)
if not BUILD_PYTHON_ONLY:
torch_package_data.extend(
[
"lib/*.so*",
"lib/*.dylib*",
"lib/*.dll",
"lib/*.lib",
]
)
if get_cmake_cache_vars()["BUILD_CAFFE2"]:
torch_package_data.extend(
[
"include/caffe2/**/*.h",
"include/caffe2/utils/*.h",
"include/caffe2/utils/**/*.h",
]
)
if get_cmake_cache_vars()["USE_TENSORPIPE"]:
torch_package_data.extend(
[
"include/tensorpipe/*.h",
"include/tensorpipe/channel/*.h",
"include/tensorpipe/channel/basic/*.h",
"include/tensorpipe/channel/cma/*.h",
"include/tensorpipe/channel/mpt/*.h",
"include/tensorpipe/channel/xth/*.h",
"include/tensorpipe/common/*.h",
"include/tensorpipe/core/*.h",
"include/tensorpipe/transport/*.h",
"include/tensorpipe/transport/ibv/*.h",
"include/tensorpipe/transport/shm/*.h",
"include/tensorpipe/transport/uv/*.h",
]
)
if get_cmake_cache_vars()["USE_KINETO"]:
torch_package_data.extend(
[
"include/kineto/*.h",
]
)
torchgen_package_data = [
# Recursive glob doesn't work in setup.py,
# https://github.com/pypa/setuptools/issues/1806
# To make this robust we should replace it with some code that
# returns a list of everything under packaged/
"packaged/ATen/*",
"packaged/ATen/native/*",
"packaged/ATen/templates/*",
"packaged/autograd/*",
"packaged/autograd/templates/*",
]
package_data = {
"torch": torch_package_data,
}
if not BUILD_LIBTORCH_WHL:
package_data["torchgen"] = torchgen_package_data
package_data["caffe2"] = [
"python/serialized_test/data/operator_test/*.zip",
]
else:
# no extensions in BUILD_LIBTORCH_WHL mode
extensions = []
setup(
name=package_name,
version=version,
description=(
"Tensors and Dynamic neural networks in "
"Python with strong GPU acceleration"
),
long_description=long_description,
long_description_content_type="text/markdown",
ext_modules=extensions,
cmdclass=cmdclass,
packages=packages,
entry_points=entry_points,
install_requires=install_requires,
extras_require=extras_require,
package_data=package_data,
url="https://pytorch.org/",
download_url="https://github.com/pytorch/pytorch/tags",
author="PyTorch Team",
author_email="packages@pytorch.org",
python_requires=f">={python_min_version_str}",
# PyPI package information.
classifiers=[
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: BSD License",
"Topic :: Scientific/Engineering",
"Topic :: Scientific/Engineering :: Mathematics",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development",
"Topic :: Software Development :: Libraries",
"Topic :: Software Development :: Libraries :: Python Modules",
"Programming Language :: C++",
"Programming Language :: Python :: 3",
]
+ [
f"Programming Language :: Python :: 3.{i}"
for i in range(python_min_version[1], version_range_max)
],
license="BSD-3",
keywords="pytorch, machine learning",
)
if EMIT_BUILD_WARNING:
print_box(build_update_message)
if __name__ == "__main__":
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。