代码拉取完成,页面将自动刷新
import argparse
from pathlib import Path
import cv2
import numpy as np
from config import CLASSES, COLORS
from models.utils import blob, det_postprocess, letterbox, path_to_list
from models.utils import det_postprocess_wlm
def main(args: argparse.Namespace) -> None:
if args.method == 'cudart':
from models.cudart_api import TRTEngine
elif args.method == 'pycuda':
from models.pycuda_api import TRTEngine
else:
raise NotImplementedError
print('start init engine')
Engine = TRTEngine(args.engine)
H, W = Engine.inp_info[0].shape[-2:]
print(f'engine.shape: {Engine.inp_info[0].shape}')
images = path_to_list(args.imgs)
save_path = Path(args.out_dir)
if not args.show and not save_path.exists():
save_path.mkdir(parents=True, exist_ok=True)
# for image in images:
for i in range(0, len(images), 4):
batch_imgs = images[i:i+4]
#
batch_tensor = np.empty((4, 3, 640, 640), dtype=np.float32) # 直接在函数调用中创建并传递元组
batch_draw = []
batch_save_iamge = []
idx = 0
for image in batch_imgs:
print(f'idx: {idx} image_name {image.name}')
save_image = save_path / image.name
bgr = cv2.imread(str(image))
draw = bgr.copy()
bgr, ratio, dwdh = letterbox(bgr, (W, H))
rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB)
tensor = blob(rgb, return_seg=False)
dwdh = np.array(dwdh * 2, dtype=np.float32)
tensor = np.ascontiguousarray(tensor)
batch_tensor[idx] = tensor
batch_draw.append(draw)
batch_save_iamge.append(save_image)
idx += 1
# inference
# data = Engine(tensor)
data = Engine(batch_tensor)
batch_bboxes, batch_scores, batch_labels = det_postprocess_wlm(data)
# bboxes, scores, labels = det_postprocess(data)
# for image in batch_imgs:
for i in range(batch_imgs.__len__()):
bboxes = batch_bboxes[i]
scores = batch_scores[i]
labels = batch_labels[i]
if bboxes.size == 0:
# if no bounding box
print(f'{image}: no object!')
continue
bboxes -= dwdh
bboxes /= ratio
draw = batch_draw[i]
save_image = batch_save_iamge[i]
for (bbox, score, label) in zip(bboxes, scores, labels):
bbox = bbox.round().astype(np.int32).tolist()
cls_id = int(label)
cls = CLASSES[cls_id]
color = COLORS[cls]
cv2.rectangle(draw, bbox[:2], bbox[2:], color, 2)
cv2.putText(draw,
f'{cls}:{score:.3f}', (bbox[0], bbox[1] - 2),
cv2.FONT_HERSHEY_SIMPLEX,
0.75, [225, 255, 255],
thickness=2)
if args.show:
cv2.imshow('result', draw)
cv2.waitKey(0)
else:
cv2.imwrite(str(save_image), draw)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--engine', type=str, help='Engine file')
parser.add_argument('--imgs', type=str, help='Images file')
parser.add_argument('--show',
action='store_true',
help='Show the detection results')
parser.add_argument('--out-dir',
type=str,
default='./output',
help='Path to output file')
parser.add_argument('--method',
type=str,
default='cudart',
help='CUDART pipeline')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
main(args)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。