代码拉取完成,页面将自动刷新
#pragma once
#include <iostream>
#include<memory>
#include <opencv2/opencv.hpp>
#include "yolov5_utils.h"
#include<onnxruntime_cxx_api.h>
//#include <tensorrt_provider_factory.h> //if use OrtTensorRTProviderOptionsV2
//#include <onnxruntime_c_api.h>
class Yolov5SegOnnx {
public:
Yolov5SegOnnx() :_OrtMemoryInfo(Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtDeviceAllocator, OrtMemType::OrtMemTypeCPUOutput)) {};
~Yolov5SegOnnx() {
if (_OrtSession != nullptr) {
delete _OrtSession;
};
}
public:
/** \brief Read onnx-model
* \param[in] modelPath:onnx-model path
* \param[in] isCuda:if true,use Ort-GPU,else run it on cpu.
* \param[in] cudaID:if isCuda==true,run Ort-GPU on cudaID.
* \param[in] warmUp:if isCuda==true,warm up GPU-model.
*/
bool ReadModel(const std::string & modelPath, bool isCuda = false, int cudaID = 0, bool warmUp = true);
/** \brief detect.
* \param[in] srcImg:a 3-channels image.
* \param[out] output:detection results of input image.
*/
bool OnnxDetect(cv::Mat & srcImg, std::vector<OutputSeg>&output);
/** \brief detect,batch size= _batchSize
* \param[in] srcImg:A batch of images.
* \param[out] output:detection results of input images.
*/
bool OnnxBatchDetect(std::vector<cv::Mat>&srcImg, std::vector<std::vector<OutputSeg>>&output);
private:
template <typename T>
T VectorProduct(const std::vector<T>&v)
{
return std::accumulate(v.begin(), v.end(), 1, std::multiplies<T>());
};
int Preprocessing(const std::vector<cv::Mat>&SrcImgs, std::vector<cv::Mat>&OutSrcImgs, std::vector<cv::Vec4d>¶ms);
const int _netWidth = 640; //ONNX-net-input-width
const int _netHeight = 640; //ONNX-net-input-height
int _batchSize = 1; //if multi-batch,set this
bool _isDynamicShape = false;//onnx support dynamic shape
float _classThreshold = 0.5;
float _nmsThreshold = 0.45;
float _maskThreshold = 0.5;
Ort::Env _OrtEnv = Ort::Env(OrtLoggingLevel::ORT_LOGGING_LEVEL_ERROR, "Yolov5-Seg");
Ort::SessionOptions _OrtSessionOptions = Ort::SessionOptions();
Ort::Session* _OrtSession = nullptr;
Ort::MemoryInfo _OrtMemoryInfo;
Ort::AllocatorWithDefaultOptions _OrtAllocator;
Ort::RunOptions _OrtRunOptions{ nullptr };
OrtStatus* _OrtStatus{ nullptr };
#if ORT_API_VERSION < ORT_OLD_VISON
char* _inputName, * _output_name0, * _output_name1;
#else
std::shared_ptr<char> _inputName, _output_name0, _output_name1;
#endif
std::vector<char*> _inputNodeNames; //输入节点名
std::vector<char*> _outputNodeNames;//输出节点名
size_t _inputNodesNum = 0; //输入节点数
size_t _outputNodesNum = 0; //输出节点数
ONNXTensorElementDataType _inputNodeDataType; //数据类型
ONNXTensorElementDataType _outputNodeDataType;
std::vector<int64_t> _inputTensorShape; //输入张量shape
std::vector<int64_t> _outputTensorShape;
std::vector<int64_t> _outputMaskTensorShape;
public:
std::vector<std::string> _className = {
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
"hair drier", "toothbrush"
};
};
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。