代码拉取完成,页面将自动刷新
#include "yolov5_onnx.h"
using namespace std;
using namespace cv;
using namespace cv::dnn;
using namespace Ort;
bool Yolov5Onnx::ReadModel(const std::string& modelPath, bool isCuda, int cudaID, bool warmUp) {
if (_batchSize < 1) _batchSize = 1;
try
{
if (!CheckModelPath(modelPath))
return false;
std::vector<std::string> available_providers = GetAvailableProviders();
auto cuda_available = std::find(available_providers.begin(), available_providers.end(), "CUDAExecutionProvider");
if (isCuda && (cuda_available == available_providers.end()))
{
std::cout << "Your ORT build without GPU. Change to CPU." << std::endl;
std::cout << "************* Infer model on CPU! *************" << std::endl;
}
else if (isCuda && (cuda_available != available_providers.end()))
{
//if Error code:LNK2019 of OrtSessionOptionsAppendExecutionProvider_CUDA or AppendExecutionProvider_CUDA,your onnxruntime is CPU based.
// comment it out and rebuild.
#if ORT_API_VERSION < ORT_OLD_VISON
OrtCUDAProviderOptions cudaOption;
cudaOption.device_id = cudaID;
_OrtSessionOptions.AppendExecutionProvider_CUDA(cudaOption);
#else
_OrtStatus = OrtSessionOptionsAppendExecutionProvider_CUDA(_OrtSessionOptions, cudaID);
#endif
}
else
{
std::cout << "************* Infer model on CPU! *************" << std::endl;
}
_OrtSessionOptions.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED);
#ifdef _WIN32
std::wstring model_path(modelPath.begin(), modelPath.end());
_OrtSession = new Ort::Session(_OrtEnv, model_path.c_str(), _OrtSessionOptions);
#else
_OrtSession = new Ort::Session(_OrtEnv, modelPath.c_str(), _OrtSessionOptions);
#endif
//init input
_inputNodesNum = _OrtSession->GetInputCount();
#if ORT_API_VERSION < ORT_OLD_VISON
_inputName = _OrtSession->GetInputName(0, _OrtAllocator);
_inputNodeNames.push_back(_inputName);
#else
_inputName = std::move(_OrtSession->GetInputNameAllocated(0, _OrtAllocator));
_inputNodeNames.push_back(_inputName.get());
#endif
Ort::TypeInfo inputTypeInfo = _OrtSession->GetInputTypeInfo(0);
auto input_tensor_info = inputTypeInfo.GetTensorTypeAndShapeInfo();
_inputNodeDataType = input_tensor_info.GetElementType();
_inputTensorShape = input_tensor_info.GetShape();
if (_inputTensorShape[0] == -1)
{
_isDynamicShape = true;
_inputTensorShape[0] = _batchSize;
}
if (_inputTensorShape[2] == -1 || _inputTensorShape[3] == -1) {
_isDynamicShape = true;
_inputTensorShape[2] = _netHeight;
_inputTensorShape[3] = _netWidth;
}
//init output
_outputNodesNum = _OrtSession->GetOutputCount();
#if ORT_API_VERSION < ORT_OLD_VISON
_output_name0 = _OrtSession->GetOutputName(0, _OrtAllocator);
#else
_output_name0 = std::move(_OrtSession->GetOutputNameAllocated(0, _OrtAllocator));
#endif
Ort::TypeInfo type_info_output0(nullptr);
Ort::TypeInfo type_info_output1(nullptr);
type_info_output0 = _OrtSession->GetOutputTypeInfo(0); //output0
#if ORT_API_VERSION < ORT_OLD_VISON
_outputNodeNames.push_back(_output_name0);
#else
_outputNodeNames.push_back(_output_name0.get());
#endif
auto tensor_info_output0 = type_info_output0.GetTensorTypeAndShapeInfo();
_outputNodeDataType = tensor_info_output0.GetElementType();
_outputTensorShape = tensor_info_output0.GetShape();
if (isCuda && warmUp) {
//draw run
cout << "Start warming up" << endl;
size_t input_tensor_length = VectorProduct(_inputTensorShape);
float* temp = new float[input_tensor_length];
std::vector<Ort::Value> input_tensors;
std::vector<Ort::Value> output_tensors;
input_tensors.push_back(Ort::Value::CreateTensor<float>(
_OrtMemoryInfo, temp, input_tensor_length, _inputTensorShape.data(),
_inputTensorShape.size()));
for (int i = 0; i < 3; ++i) {
output_tensors = _OrtSession->Run(_OrtRunOptions,
_inputNodeNames.data(),
input_tensors.data(),
_inputNodeNames.size(),
_outputNodeNames.data(),
_outputNodeNames.size());
}
delete[]temp;
}
}
catch (const std::exception&) {
return false;
}
return true;
}
int Yolov5Onnx::Preprocessing(const std::vector<cv::Mat>& srcImgs, std::vector<cv::Mat>& outSrcImgs, std::vector<cv::Vec4d>& params) {
outSrcImgs.clear();
Size input_size = Size(_netWidth, _netHeight);
for (int i = 0; i < srcImgs.size(); ++i) {
Mat temp_img = srcImgs[i];
Vec4d temp_param = { 1,1,0,0 };
if (temp_img.size() != input_size) {
Mat borderImg;
LetterBox(temp_img, borderImg, temp_param, input_size, false, false, true, 32);
//cout << borderImg.size() << endl;
outSrcImgs.push_back(borderImg);
params.push_back(temp_param);
}
else {
outSrcImgs.push_back(temp_img);
params.push_back(temp_param);
}
}
int lack_num = _batchSize - srcImgs.size();
if (lack_num > 0) {
for (int i = 0; i < lack_num; ++i) {
Mat temp_img = Mat::zeros(input_size, CV_8UC3);
Vec4d temp_param = { 1,1,0,0 };
outSrcImgs.push_back(temp_img);
params.push_back(temp_param);
}
}
return 0;
}
bool Yolov5Onnx::OnnxDetect(cv::Mat& srcImg, std::vector<OutputSeg>& output) {
vector<cv::Mat> input_data = { srcImg };
std::vector<std::vector<OutputSeg>> tenp_output;
if (OnnxBatchDetect(input_data, tenp_output)) {
output = tenp_output[0];
return true;
}
else return false;
}
bool Yolov5Onnx::OnnxBatchDetect(std::vector<cv::Mat>& srcImgs, std::vector<std::vector<OutputSeg>>& output) {
vector<Vec4d> params;
vector<Mat> input_images;
Size input_size(_netWidth, _netHeight);
//preprocessing
Preprocessing(srcImgs, input_images, params);
Mat blob = cv::dnn::blobFromImages(input_images, 1 / 255.0, input_size, Scalar(0, 0, 0), true, false);
size_t input_tensor_length = VectorProduct(_inputTensorShape);
std::vector<Ort::Value> input_tensors;
std::vector<Ort::Value> output_tensors;
input_tensors.push_back(Ort::Value::CreateTensor<float>(_OrtMemoryInfo, (float*)blob.data, input_tensor_length, _inputTensorShape.data(), _inputTensorShape.size()));
output_tensors = _OrtSession->Run(_OrtRunOptions,
_inputNodeNames.data(),
input_tensors.data(),
_inputNodeNames.size(),
_outputNodeNames.data(),
_outputNodeNames.size()
);
//post-process
float* pdata = output_tensors[0].GetTensorMutableData<float>();
_outputTensorShape = output_tensors[0].GetTensorTypeAndShapeInfo().GetShape();
int64_t one_output_length = VectorProduct(_outputTensorShape) / _outputTensorShape[0];
int net_width = _outputTensorShape[2];
int net_height = _outputTensorShape[1];
for (int img_index = 0; img_index < srcImgs.size(); ++img_index) {
std::vector<int> class_ids;//结果id数组
std::vector<float> confidences;//结果每个id对应置信度数组
std::vector<cv::Rect> boxes;//每个id矩形框
for (int r = 0; r < net_height; r++) { //stride
float box_score = pdata[4]; ;//box-confidence
if (box_score >= _classThreshold) {
cv::Mat scores(1, _className.size(), CV_32FC1, pdata + 5);
Point classIdPoint;
double max_class_socre;
minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
max_class_socre = (float)max_class_socre;
if (max_class_socre >= _classThreshold) {
//rect [x,y,w,h]
float x = (pdata[0] - params[img_index][2]) / params[img_index][0]; //x
float y = (pdata[1] - params[img_index][3]) / params[img_index][1]; //y
float w = pdata[2] / params[img_index][0]; //w
float h = pdata[3] / params[img_index][1]; //h
int left = MAX(int(x - 0.5 * w + 0.5), 0);
int top = MAX(int(y - 0.5 * h + 0.5), 0);
class_ids.push_back(classIdPoint.x);
confidences.push_back(max_class_socre * box_score);
boxes.push_back(Rect(left, top, int(w + 0.5), int(h + 0.5)));
}
}
pdata += net_width;//下一行
}
vector<int> nms_result;
cv::dnn::NMSBoxes(boxes, confidences, _classThreshold, _nmsThreshold, nms_result);
std::vector<vector<float>> temp_mask_proposals;
Rect holeImgRect(0, 0, srcImgs[img_index].cols, srcImgs[img_index].rows);
std::vector<OutputSeg > temp_output;
for (int i = 0; i < nms_result.size(); ++i) {
int idx = nms_result[i];
OutputSeg result;
result.id = class_ids[idx];
result.confidence = confidences[idx];
result.box = boxes[idx] & holeImgRect;
temp_output.push_back(result);
}
output.push_back(temp_output);
}
if (output.size())
return true;
else
return false;
return true;
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。