1 Star 0 Fork 0

xzh/laser_detect_cpp

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
yolov3-tiny.cpp 20.18 KB
一键复制 编辑 原始数据 按行查看 历史
xzh 提交于 2021-03-18 10:51 . mod obj_dist
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609
#include <fstream>
#include <iostream>
#include <map>
#include <sstream>
#include <vector>
#include <chrono>
#include <opencv2/opencv.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/videoio.hpp>
#include <dirent.h>
#include <string>
#include "NvInfer.h"
#include "cuda_runtime_api.h"
#include "logging.h"
#include "yololayer.h"
#include "serialPort.h"
#define ENABLE_UART
#define CHECK(status) \
do\
{\
auto ret = (status);\
if (ret != 0)\
{\
std::cerr << "Cuda failure: " << ret << std::endl;\
abort();\
}\
} while (0)
#define USE_FP16 // comment out this if want to use FP32
#define DEVICE 0 // GPU id
#define NMS_THRESH 0.5
#define BBOX_CONF_THRESH 0.4
#define UART_DEVICE "/dev/ttyTHS0"
typedef enum{
LASER_ON,
LASER_OFF,
} laser_status_t;
char uart_buff[32];
using namespace nvinfer1;
// stuff we know about the network and the input/output blobs
static const int INPUT_H = Yolo::INPUT_H;
static const int INPUT_W = Yolo::INPUT_W;
static const int OUTPUT_SIZE = 1000 * 7 + 1; // we assume the yololayer outputs no more than 1000 boxes that conf >= 0.1
const char* INPUT_BLOB_NAME = "data";
const char* OUTPUT_BLOB_NAME = "prob";
static Logger gLogger;
cv::Mat preprocess_img(cv::Mat& img) {
int w, h, x, y;
float r_w = INPUT_W / (img.cols*1.0);
float r_h = INPUT_H / (img.rows*1.0);
if (r_h > r_w) {
w = INPUT_W;
h = r_w * img.rows;
x = 0;
y = (INPUT_H - h) / 2;
} else {
w = r_h* img.cols;
h = INPUT_H;
x = (INPUT_W - w) / 2;
y = 0;
}
cv::Mat re(h, w, CV_8UC3);
cv::resize(img, re, re.size(), 0, 0, cv::INTER_CUBIC);
cv::Mat out(INPUT_H, INPUT_W, CV_8UC3, cv::Scalar(128, 128, 128));
re.copyTo(out(cv::Rect(x, y, re.cols, re.rows)));
return out;
}
cv::Rect get_rect(cv::Mat& img, float bbox[4]) {
int l, r, t, b;
float r_w = INPUT_W / (img.cols * 1.0);
float r_h = INPUT_H / (img.rows * 1.0);
if (r_h > r_w) {
l = bbox[0] - bbox[2]/2.f;
r = bbox[0] + bbox[2]/2.f;
t = bbox[1] - bbox[3]/2.f - (INPUT_H - r_w * img.rows) / 2;
b = bbox[1] + bbox[3]/2.f - (INPUT_H - r_w * img.rows) / 2;
l = l / r_w;
r = r / r_w;
t = t / r_w;
b = b / r_w;
} else {
l = bbox[0] - bbox[2]/2.f - (INPUT_W - r_h * img.cols) / 2;
r = bbox[0] + bbox[2]/2.f - (INPUT_W - r_h * img.cols) / 2;
t = bbox[1] - bbox[3]/2.f;
b = bbox[1] + bbox[3]/2.f;
l = l / r_h;
r = r / r_h;
t = t / r_h;
b = b / r_h;
}
return cv::Rect(l, t, r-l, b-t);
}
float iou(float lbox[4], float rbox[4]) {
float interBox[] = {
std::max(lbox[0] - lbox[2]/2.f , rbox[0] - rbox[2]/2.f), //left
std::min(lbox[0] + lbox[2]/2.f , rbox[0] + rbox[2]/2.f), //right
std::max(lbox[1] - lbox[3]/2.f , rbox[1] - rbox[3]/2.f), //top
std::min(lbox[1] + lbox[3]/2.f , rbox[1] + rbox[3]/2.f), //bottom
};
if(interBox[2] > interBox[3] || interBox[0] > interBox[1])
return 0.0f;
float interBoxS =(interBox[1]-interBox[0])*(interBox[3]-interBox[2]);
return interBoxS/(lbox[2]*lbox[3] + rbox[2]*rbox[3] -interBoxS);
}
bool cmp(const Yolo::Detection& a, const Yolo::Detection& b) {
return a.det_confidence > b.det_confidence;
}
void nms(std::vector<Yolo::Detection>& res, float *output, float nms_thresh = NMS_THRESH) {
std::map<float, std::vector<Yolo::Detection>> m;
for (int i = 0; i < output[0] && i < 1000; i++) {
if (output[1 + 7 * i + 4] <= BBOX_CONF_THRESH) continue;
Yolo::Detection det;
memcpy(&det, &output[1 + 7 * i], 7 * sizeof(float));
if (m.count(det.class_id) == 0) m.emplace(det.class_id, std::vector<Yolo::Detection>());
m[det.class_id].push_back(det);
}
for (auto it = m.begin(); it != m.end(); it++) {
//std::cout << it->second[0].class_id << " --- " << std::endl;
auto& dets = it->second;
std::sort(dets.begin(), dets.end(), cmp);
for (size_t m = 0; m < dets.size(); ++m) {
auto& item = dets[m];
res.push_back(item);
for (size_t n = m + 1; n < dets.size(); ++n) {
if (iou(item.bbox, dets[n].bbox) > nms_thresh) {
dets.erase(dets.begin()+n);
--n;
}
}
}
}
}
// TensorRT weight files have a simple space delimited format:
// [type] [size] <data x size in hex>
std::map<std::string, Weights> loadWeights(const std::string file) {
std::cout << "Loading weights: " << file << std::endl;
std::map<std::string, Weights> weightMap;
// Open weights file
std::ifstream input(file);
assert(input.is_open() && "Unable to load weight file.");
// Read number of weight blobs
int32_t count;
input >> count;
assert(count > 0 && "Invalid weight map file.");
while (count--)
{
Weights wt{DataType::kFLOAT, nullptr, 0};
uint32_t size;
// Read name and type of blob
std::string name;
input >> name >> std::dec >> size;
wt.type = DataType::kFLOAT;
// Load blob
uint32_t* val = reinterpret_cast<uint32_t*>(malloc(sizeof(val) * size));
for (uint32_t x = 0, y = size; x < y; ++x)
{
input >> std::hex >> val[x];
}
wt.values = val;
wt.count = size;
weightMap[name] = wt;
}
return weightMap;
}
IScaleLayer* addBatchNorm2d(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, std::string lname, float eps) {
float *gamma = (float*)weightMap[lname + ".weight"].values;
float *beta = (float*)weightMap[lname + ".bias"].values;
float *mean = (float*)weightMap[lname + ".running_mean"].values;
float *var = (float*)weightMap[lname + ".running_var"].values;
int len = weightMap[lname + ".running_var"].count;
float *scval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
scval[i] = gamma[i] / sqrt(var[i] + eps);
}
Weights scale{DataType::kFLOAT, scval, len};
float *shval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
shval[i] = beta[i] - mean[i] * gamma[i] / sqrt(var[i] + eps);
}
Weights shift{DataType::kFLOAT, shval, len};
float *pval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
pval[i] = 1.0;
}
Weights power{DataType::kFLOAT, pval, len};
weightMap[lname + ".scale"] = scale;
weightMap[lname + ".shift"] = shift;
weightMap[lname + ".power"] = power;
IScaleLayer* scale_1 = network->addScale(input, ScaleMode::kCHANNEL, shift, scale, power);
assert(scale_1);
return scale_1;
}
ILayer* convBnLeaky(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int outch, int ksize, int s, int p, int linx) {
Weights emptywts{DataType::kFLOAT, nullptr, 0};
IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{ksize, ksize}, weightMap["module_list." + std::to_string(linx) + ".Conv2d.weight"], emptywts);
assert(conv1);
conv1->setStrideNd(DimsHW{s, s});
conv1->setPaddingNd(DimsHW{p, p});
IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), "module_list." + std::to_string(linx) + ".BatchNorm2d", 1e-4);
auto lr = network->addActivation(*bn1->getOutput(0), ActivationType::kLEAKY_RELU);
lr->setAlpha(0.1);
return lr;
}
// Creat the engine using only the API and not any parser.
ICudaEngine* createEngine(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config, DataType dt) {
INetworkDefinition* network = builder->createNetworkV2(0U);
// Create input tensor of shape {3, INPUT_H, INPUT_W} with name INPUT_BLOB_NAME
ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{3, INPUT_H, INPUT_W});
assert(data);
std::map<std::string, Weights> weightMap = loadWeights("../laser_detect.wts");
Weights emptywts{DataType::kFLOAT, nullptr, 0};
auto lr0 = convBnLeaky(network, weightMap, *data, 16, 3, 1, 1, 0);
auto pool1 = network->addPoolingNd(*lr0->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
pool1->setStrideNd(DimsHW{2, 2});
auto lr2 = convBnLeaky(network, weightMap, *pool1->getOutput(0), 32, 3, 1, 1, 2);
auto pool3 = network->addPoolingNd(*lr2->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
pool3->setStrideNd(DimsHW{2, 2});
auto lr4 = convBnLeaky(network, weightMap, *pool3->getOutput(0), 64, 3, 1, 1, 4);
auto pool5 = network->addPoolingNd(*lr4->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
pool5->setStrideNd(DimsHW{2, 2});
auto lr6 = convBnLeaky(network, weightMap, *pool5->getOutput(0), 128, 3, 1, 1, 6);
auto pool7 = network->addPoolingNd(*lr6->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
pool7->setStrideNd(DimsHW{2, 2});
auto lr8 = convBnLeaky(network, weightMap, *pool7->getOutput(0), 256, 3, 1, 1, 8);
auto pool9 = network->addPoolingNd(*lr8->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
pool9->setStrideNd(DimsHW{2, 2});
auto lr10 = convBnLeaky(network, weightMap, *pool9->getOutput(0), 512, 3, 1, 1, 10);
auto pad11 = network->addPaddingNd(*lr10->getOutput(0), DimsHW{0, 0}, DimsHW{1, 1});
auto pool11 = network->addPoolingNd(*pad11->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
pool11->setStrideNd(DimsHW{1, 1});
auto lr12 = convBnLeaky(network, weightMap, *pool11->getOutput(0), 1024, 3, 1, 1, 12);
auto lr13 = convBnLeaky(network, weightMap, *lr12->getOutput(0), 256, 1, 1, 0, 13);
auto lr14 = convBnLeaky(network, weightMap, *lr13->getOutput(0), 512, 3, 1, 1, 14);
IConvolutionLayer* conv15 = network->addConvolutionNd(*lr14->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{1, 1}, weightMap["module_list.15.Conv2d.weight"], weightMap["module_list.15.Conv2d.bias"]);
// 16 is yolo
auto l17 = lr13;
auto lr18 = convBnLeaky(network, weightMap, *l17->getOutput(0), 128, 1, 1, 0, 18);
float *deval = reinterpret_cast<float*>(malloc(sizeof(float) * 128 * 2 * 2));
for (int i = 0; i < 128 * 2 * 2; i++) {
deval[i] = 1.0;
}
Weights deconvwts19{DataType::kFLOAT, deval, 128 * 2 * 2};
IDeconvolutionLayer* deconv19 = network->addDeconvolutionNd(*lr18->getOutput(0), 128, DimsHW{2, 2}, deconvwts19, emptywts);
assert(deconv19);
deconv19->setStrideNd(DimsHW{2, 2});
deconv19->setNbGroups(128);
weightMap["deconv19"] = deconvwts19;
ITensor* inputTensors[] = {deconv19->getOutput(0), lr8->getOutput(0)};
auto cat20 = network->addConcatenation(inputTensors, 2);
auto lr21 = convBnLeaky(network, weightMap, *cat20->getOutput(0), 256, 3, 1, 1, 21);
IConvolutionLayer* conv22 = network->addConvolutionNd(*lr21->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{1, 1}, weightMap["module_list.22.Conv2d.weight"], weightMap["module_list.22.Conv2d.bias"]);
// 22 is yolo
auto creator = getPluginRegistry()->getPluginCreator("YoloLayer_TRT", "1");
const PluginFieldCollection* pluginData = creator->getFieldNames();
IPluginV2 *pluginObj = creator->createPlugin("yololayer", pluginData);
ITensor* inputTensors_yolo[] = {conv15->getOutput(0), conv22->getOutput(0)};
auto yolo = network->addPluginV2(inputTensors_yolo, 2, *pluginObj);
yolo->getOutput(0)->setName(OUTPUT_BLOB_NAME);
network->markOutput(*yolo->getOutput(0));
// Build engine
builder->setMaxBatchSize(maxBatchSize);
config->setMaxWorkspaceSize(16 * (1 << 20)); // 16MB
#ifdef USE_FP16
config->setFlag(BuilderFlag::kFP16);
#endif
std::cout << "Building engine, please wait for a while..." << std::endl;
ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
std::cout << "Build engine successfully!" << std::endl;
// Don't need the network any more
network->destroy();
// Release host memory
for (auto& mem : weightMap)
{
free((void*) (mem.second.values));
}
return engine;
}
void APIToModel(unsigned int maxBatchSize, IHostMemory** modelStream) {
// Create builder
IBuilder* builder = createInferBuilder(gLogger);
IBuilderConfig* config = builder->createBuilderConfig();
// Create model to populate the network, then set the outputs and create an engine
ICudaEngine* engine = createEngine(maxBatchSize, builder, config, DataType::kFLOAT);
assert(engine != nullptr);
// Serialize the engine
(*modelStream) = engine->serialize();
// Close everything down
engine->destroy();
builder->destroy();
}
void doInference(IExecutionContext& context, float* input, float* output, int batchSize) {
const ICudaEngine& engine = context.getEngine();
// Pointers to input and output device buffers to pass to engine.
// Engine requires exactly IEngine::getNbBindings() number of buffers.
assert(engine.getNbBindings() == 2);
void* buffers[2];
// In order to bind the buffers, we need to know the names of the input and output tensors.
// Note that indices are guaranteed to be less than IEngine::getNbBindings()
const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME);
// Create GPU buffers on device
CHECK(cudaMalloc(&buffers[inputIndex], batchSize * 3 * INPUT_H * INPUT_W * sizeof(float)));
CHECK(cudaMalloc(&buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float)));
// Create stream
cudaStream_t stream;
CHECK(cudaStreamCreate(&stream));
// DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
context.enqueue(batchSize, buffers, stream, nullptr);
CHECK(cudaMemcpyAsync(output, buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream));
cudaStreamSynchronize(stream);
// Release stream and buffers
cudaStreamDestroy(stream);
CHECK(cudaFree(buffers[inputIndex]));
CHECK(cudaFree(buffers[outputIndex]));
}
int read_files_in_dir(const char *p_dir_name, std::vector<std::string> &file_names) {
DIR *p_dir = opendir(p_dir_name);
if (p_dir == nullptr) {
return -1;
}
struct dirent* p_file = nullptr;
while ((p_file = readdir(p_dir)) != nullptr) {
if (strcmp(p_file->d_name, ".") != 0 &&
strcmp(p_file->d_name, "..") != 0) {
//std::string cur_file_name(p_dir_name);
//cur_file_name += "/";
//cur_file_name += p_file->d_name;
std::string cur_file_name(p_file->d_name);
file_names.push_back(cur_file_name);
}
}
closedir(p_dir);
return 0;
}
int get_car_speed(char *speed_in_str)
{
int res = 0;
char *ptr = speed_in_str;
while(ptr)
{
int tmp = *ptr - '0';
std::cout << "transform: " << tmp << std::endl;
res = res * 10 + tmp;
ptr += 1;
}
return res;
}
int update_car_speed(int speed)
{
return speed;
}
int update_obj_dist(int dist)
{
return dist;
}
int main(int argc, char** argv) {
if(argc != 2)
{
std::cerr << "please give in the viehle speed" << std::endl;
return -1;
}
int car_speed = std::stoi(std::string(argv[1]));
int obj_dist = 450;
int obj_detected = 0;
cudaSetDevice(DEVICE);
// setting for the camera
cv::VideoCapture cap;
cap.open(0);
// cap.open("../videos/laser_detect_test_video.avi");
if(!cap.isOpened())
{
std::cerr << "the camera can not be opened" << std::endl;
return -1;
}
//cap.set(cv::CAP_PROP_FRAME_WIDTH, 1024);
//cap.set(cv::CAP_PROP_FRAME_HEIGHT, 768);
// setting for the serial port
#ifdef ENABLE_UART
serialPort myserial;
int numUartToSend, numUartWrited;
if(myserial.OpenPort(UART_DEVICE) < 0)
{
std::cerr << "can not open the uart deice" << std::endl;
return -1;
}
if(myserial.setup(115200, 0, 8, 1, 'N') < 0)
{
std::cerr << "setup for the uart deivec failed" << std::endl;
return -1;
}
#endif
// create a model using the API directly and serialize it to a stream
char *trtModelStream{nullptr};
size_t size{0};
std::ifstream file("yolov3-tiny.engine", std::ios::binary);
if (file.good()) {
file.seekg(0, file.end);
size = file.tellg();
file.seekg(0, file.beg);
trtModelStream = new char[size];
assert(trtModelStream);
file.read(trtModelStream, size);
file.close();
}
// prepare input data ---------------------------
static float data[3 * INPUT_H * INPUT_W];
//for (int i = 0; i < 3 * INPUT_H * INPUT_W; i++)
// data[i] = 1.0;
static float prob[OUTPUT_SIZE];
IRuntime* runtime = createInferRuntime(gLogger);
assert(runtime != nullptr);
ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size);
assert(engine != nullptr);
IExecutionContext* context = engine->createExecutionContext();
assert(context != nullptr);
delete[] trtModelStream;
int fcount = 0;
cv::Mat img;
int num_cnt = 0;
std::vector<Yolo::Detection> last_obj_info;
laser_status_t laser_status = LASER_ON;
int up_limit = 2, bottom_limit = -5;
while(true){
cap.read(img);
if(img.empty()) break;
cv::Mat pr_img = preprocess_img(img);
for (int i = 0; i < INPUT_H * INPUT_W; i++) {
data[i] = pr_img.at<cv::Vec3b>(i)[2] / 255.0;
data[i + INPUT_H * INPUT_W] = pr_img.at<cv::Vec3b>(i)[1] / 255.0;
data[i + 2 * INPUT_H * INPUT_W] = pr_img.at<cv::Vec3b>(i)[0] / 255.0;
}
// Run inference
auto start = std::chrono::system_clock::now();
doInference(*context, data, prob, 1);
auto end = std::chrono::system_clock::now();
//std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl;
std::vector<Yolo::Detection> res;
nms(res, prob);
// display and send msg
int detected_obj_nums = res.size();
if(detected_obj_nums > 0)
{
num_cnt = num_cnt >= up_limit? up_limit : num_cnt + 1;
if(num_cnt >= up_limit)
{
for (size_t j = 0; j < res.size(); j++) {
cv::Rect r = get_rect(img, res[j].bbox);
cv::rectangle(img, r, cv::Scalar(0x27, 0xC1, 0x36), 2);
cv::putText(img, "night_car", cv::Point(r.x, r.y - 1), cv::FONT_HERSHEY_PLAIN, 1.2, cv::Scalar(0xFF, 0xFF, 0xFF), 2);
}
last_obj_info = res;
obj_detected = 1;
}
}
else
{
num_cnt = (num_cnt <= bottom_limit)? bottom_limit : num_cnt -1;
if(num_cnt <= bottom_limit)
{
obj_detected = 0;
}
else
{
if(last_obj_info.size() > 0)
{
for (size_t j = 0; j < last_obj_info.size(); j++) {
cv::Rect r = get_rect(img, last_obj_info[j].bbox);
cv::rectangle(img, r, cv::Scalar(0x27, 0xC1, 0x36), 2);
cv::putText(img, "night_car", cv::Point(r.x, r.y - 1), cv::FONT_HERSHEY_PLAIN, 1.2, cv::Scalar(0xFF, 0xFF, 0xFF), 2);
}
}
}
}
// control the laser
if(!obj_detected && car_speed >= 50)
{
if(laser_status == LASER_OFF)
{
numUartToSend = sprintf(uart_buff, "ro\n");
myserial.writeBuffer(uart_buff, numUartToSend);
laser_status = LASER_ON;
std::cout << "ro\n" << std::endl;
}
}
else
{
if(laser_status == LASER_ON)
{
numUartToSend = sprintf(uart_buff, "rc\n");
myserial.writeBuffer(uart_buff, numUartToSend);
laser_status = LASER_OFF;
std::cout << "rc\n" << std::endl;
}
}
// add info to imgs
if(obj_detected)
{
std::string detect_info = "dist: " + std::to_string(update_obj_dist(obj_dist)) + " m";
cv::putText(img, detect_info, cv::Point(10, 90), cv::FONT_HERSHEY_PLAIN, 1.0, cv::Scalar(0x0, 0xff, 0x0), 2);
}
std::string car_speed_info = "speed: " + std::to_string(car_speed);
std::string laser_status_info ="laser: " + std::string((laser_status == LASER_ON)? "ON" : "off");
cv::putText(img, car_speed_info, cv::Point(10, 30), cv::FONT_HERSHEY_PLAIN, 1.0, cv::Scalar(0x0, 0xff, 0x0), 2);
cv::putText(img, laser_status_info, cv::Point(10, 60), cv::FONT_HERSHEY_PLAIN, 1.0, cv::Scalar(0x0, 0xff, 0x0), 2);
cv::imshow("cam", img);
if(cv::waitKey(10) >= 0)
break;
}
// Destroy the engine
context->destroy();
engine->destroy();
runtime->destroy();
// close uart and cap
cap.release();
#ifdef ENABLE_UART
myserial.ClosePort();
#endif
return 0;
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/meizeidexzh/laser_detect_cpp.git
git@gitee.com:meizeidexzh/laser_detect_cpp.git
meizeidexzh
laser_detect_cpp
laser_detect_cpp
master

搜索帮助