代码拉取完成,页面将自动刷新
同步操作将从 我爱计算机视觉/Point-GNN 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
"""This file defines the evaluation process of Point-GNN object detection."""
import os
import time
import argparse
import numpy as np
import tensorflow as tf
from dataset.kitti_dataset import KittiDataset
from models.graph_gen import get_graph_generate_fn
from models.models import get_model
from models.box_encoding import get_box_decoding_fn, get_box_encoding_fn, \
get_encoding_len
from models import preprocess
from util.config_util import load_config, load_train_config
from util.summary_util import write_summary_scale
parser = argparse.ArgumentParser(description='Repeated evaluation of PointGNN.')
parser.add_argument('eval_config_path', type=str,
help='Path to train_config')
parser.add_argument('--dataset_root_dir', type=str, default='../dataset/kitti/',
help='Path to KITTI dataset. Default="../dataset/kitti/"')
parser.add_argument('--dataset_split_file', type=str,
default='',
help='Path to KITTI dataset split file.'
'Default="DATASET_ROOT_DIR/3DOP_splits'
'/eval_config["eval_dataset"]"')
args = parser.parse_args()
eval_config = load_train_config(args.eval_config_path)
DATASET_DIR = args.dataset_root_dir
if args.dataset_split_file == '':
DATASET_SPLIT_FILE = os.path.join(DATASET_DIR,
'./3DOP_splits/'+eval_config['eval_dataset'])
else:
DATASET_SPLIT_FILE = args.dataset_split_file
config_path = os.path.join(eval_config['train_dir'], eval_config['config_path'])
while not os.path.isfile(config_path):
print('No config file found in %s, waiting' % config_path)
time.sleep(eval_config['eval_every_second'])
config = load_config(config_path)
if 'eval' in config:
config = config['eval']
dataset = KittiDataset(
os.path.join(DATASET_DIR, 'image/training/image_2'),
os.path.join(DATASET_DIR, 'velodyne/training/velodyne/'),
os.path.join(DATASET_DIR, 'calib/training/calib/'),
os.path.join(DATASET_DIR, 'labels/training/label_2'),
DATASET_SPLIT_FILE,
num_classes=config['num_classes'])
NUM_CLASSES = dataset.num_classes
if 'NUM_TEST_SAMPLE' not in eval_config:
NUM_TEST_SAMPLE = dataset.num_files
else:
if eval_config['NUM_TEST_SAMPLE'] < 0:
NUM_TEST_SAMPLE = dataset.num_files
else:
NUM_TEST_SAMPLE = eval_config['NUM_TEST_SAMPLE']
print(NUM_TEST_SAMPLE)
BOX_ENCODING_LEN = get_encoding_len(config['box_encoding_method'])
box_encoding_fn = get_box_encoding_fn(config['box_encoding_method'])
box_decoding_fn = get_box_decoding_fn(config['box_encoding_method'])
aug_fn = preprocess.get_data_aug(eval_config['data_aug_configs'])
def fetch_data(frame_idx):
cam_rgb_points = dataset.get_cam_points_in_image_with_rgb(frame_idx,
config['downsample_by_voxel_size'])
box_label_list = dataset.get_label(frame_idx)
cam_rgb_points, box_label_list = aug_fn(cam_rgb_points, box_label_list)
graph_generate_fn= get_graph_generate_fn(config['graph_gen_method'])
(vertex_coord_list, keypoint_indices_list, edges_list) = graph_generate_fn(
cam_rgb_points.xyz, **config['graph_gen_kwargs'])
if config['input_features'] == 'irgb':
input_v = cam_rgb_points.attr
elif config['input_features'] == '0rgb':
input_v = np.hstack([np.zeros((cam_rgb_points.attr.shape[0], 1)),
cam_rgb_points.attr[:, 1:]])
elif config['input_features'] == '0000':
input_v = np.zeros_like(cam_rgb_points.attr)
elif config['input_features'] == 'i000':
input_v = np.hstack([cam_rgb_points.attr[:, [0]],
np.zeros((cam_rgb_points.attr.shape[0], 3))])
elif config['input_features'] == 'i':
input_v = cam_rgb_points.attr[:, [0]]
elif config['input_features'] == '0':
input_v = np.zeros((cam_rgb_points.attr.shape[0], 1))
last_layer_graph_level = config['model_kwargs'][
'layer_configs'][-1]['graph_level']
last_layer_points_xyz = vertex_coord_list[last_layer_graph_level+1]
if config['label_method'] == 'yaw':
(cls_labels, boxes_3d, valid_boxes, label_map) =\
dataset.assign_classaware_label_to_points(box_label_list,
last_layer_points_xyz, expend_factor=(1.0, 1.0, 1.0))
if config['label_method'] == 'Car':
cls_labels, boxes_3d, valid_boxes, label_map =\
dataset.assign_classaware_car_label_to_points(box_label_list,
last_layer_points_xyz, expend_factor=(1.0, 1.0, 1.0))
if config['label_method'] == 'Pedestrian_and_Cyclist':
cls_labels, boxes_3d, valid_boxes, label_map =\
dataset.assign_classaware_ped_and_cyc_label_to_points(
box_label_list,
last_layer_points_xyz, expend_factor=(1.0, 1.0, 1.0))
encoded_boxes = box_encoding_fn(
cls_labels, last_layer_points_xyz, boxes_3d, label_map)
# reducing memory usage by casting to 32bits
input_v = input_v.astype(np.float32)
vertex_coord_list = [p.astype(np.float32) for p in vertex_coord_list]
keypoint_indices_list = [e.astype(np.int32) for e in keypoint_indices_list]
edges_list = [e.astype(np.int32) for e in edges_list]
cls_labels = cls_labels.astype(np.int32)
encoded_boxes = encoded_boxes.astype(np.float32)
valid_boxes = valid_boxes.astype(np.float32)
return(input_v, vertex_coord_list, keypoint_indices_list, edges_list,
cls_labels, encoded_boxes, valid_boxes)
# model =======================================================================
if config['input_features'] == 'irgb':
t_initial_vertex_features = tf.placeholder(
dtype=tf.float32, shape=[None, 4])
elif config['input_features'] == 'rgb':
t_initial_vertex_features = tf.placeholder(
dtype=tf.float32, shape=[None, 3])
elif config['input_features'] == '0000':
t_initial_vertex_features = tf.placeholder(
dtype=tf.float32, shape=[None, 4])
elif config['input_features'] == 'i000':
t_initial_vertex_features = tf.placeholder(
dtype=tf.float32, shape=[None, 4])
elif config['input_features'] == 'i':
t_initial_vertex_features = tf.placeholder(
dtype=tf.float32, shape=[None, 1])
elif config['input_features'] == '0':
t_initial_vertex_features = tf.placeholder(
dtype=tf.float32, shape=[None, 1])
t_vertex_coord_list = [tf.placeholder(dtype=tf.float32, shape=[None, 3])]
for _ in range(len(config['graph_gen_kwargs']['level_configs'])):
t_vertex_coord_list.append(
tf.placeholder(dtype=tf.float32, shape=[None, 3]))
t_edges_list = []
for _ in range(len(config['graph_gen_kwargs']['level_configs'])):
t_edges_list.append(
tf.placeholder(dtype=tf.int32, shape=[None, 2]))
t_keypoint_indices_list = []
for _ in range(len(config['graph_gen_kwargs']['level_configs'])):
t_keypoint_indices_list.append(
tf.placeholder(dtype=tf.int32, shape=[None, 1]))
t_class_labels = tf.placeholder(dtype=tf.int32, shape=[None, 1])
t_encoded_gt_boxes = tf.placeholder(dtype=tf.float32,
shape=[None, 1, BOX_ENCODING_LEN])
t_valid_gt_boxes = tf.placeholder(dtype=tf.float32, shape=[None, 1, 1])
t_is_training = tf.placeholder(dtype=tf.bool, shape=[])
model = get_model(config['model_name'])(num_classes=NUM_CLASSES,
box_encoding_len=BOX_ENCODING_LEN, mode='eval', **config['model_kwargs'])
t_logits, t_pred_box = model.predict(
t_initial_vertex_features, t_vertex_coord_list, t_keypoint_indices_list,
t_edges_list,
t_is_training)
t_probs = model.postprocess(t_logits)
t_predictions = tf.argmax(t_probs, axis=1, output_type=tf.int32)
t_loss_dict = model.loss(t_logits, t_class_labels, t_pred_box,
t_encoded_gt_boxes, t_valid_gt_boxes, **config['loss'])
t_cls_loss = t_loss_dict['cls_loss']
t_loc_loss = t_loss_dict['loc_loss']
t_reg_loss = t_loss_dict['reg_loss']
t_classwise_loc_loss = t_loss_dict['classwise_loc_loss']
t_total_loss = t_cls_loss + t_loc_loss + t_reg_loss
t_classwise_loc_loss_update_ops = {}
for class_idx in range(NUM_CLASSES):
for bi in range(BOX_ENCODING_LEN):
classwise_loc_loss_ind =t_classwise_loc_loss[class_idx][bi]
t_mean_loss, t_mean_loss_op = tf.metrics.mean(
classwise_loc_loss_ind,
name=('loc_loss_cls_%d_box_%d'%(class_idx, bi)))
t_classwise_loc_loss_update_ops[
('loc_loss_cls_%d_box_%d'%(class_idx, bi))] = t_mean_loss_op
classwise_loc_loss =t_classwise_loc_loss[class_idx]
t_mean_loss, t_mean_loss_op = tf.metrics.mean(
classwise_loc_loss,
name=('loc_loss_cls_%d'%class_idx))
t_classwise_loc_loss_update_ops[
('loc_loss_cls_%d'%class_idx)] = t_mean_loss_op
# metrics
t_recall_update_ops = {}
for class_idx in range(NUM_CLASSES):
t_recall, t_recall_update_op = tf.metrics.recall(
tf.equal(t_class_labels, tf.constant(class_idx, tf.int32)),
tf.equal(t_predictions, tf.constant(class_idx, tf.int32)),
name=('recall_%d'%class_idx))
t_recall_update_ops[('recall_%d'%class_idx)] = t_recall_update_op
t_precision_update_ops = {}
for class_idx in range(NUM_CLASSES):
t_precision, t_precision_update_op = tf.metrics.precision(
tf.equal(t_class_labels, tf.constant(class_idx, tf.int32)),
tf.equal(t_predictions, tf.constant(class_idx, tf.int32)),
name=('precision_%d'%class_idx))
t_precision_update_ops[('precision_%d'%class_idx)] = t_precision_update_op
t_mAP_update_ops = {}
for class_idx in range(NUM_CLASSES):
t_mAP, t_mAP_update_op = tf.metrics.auc(
tf.equal(t_class_labels, tf.constant(class_idx, tf.int32)),
t_probs[:, class_idx],
num_thresholds=200,
curve='PR',
name=('mAP_%d'%class_idx),
summation_method='careful_interpolation')
t_mAP_update_ops[('mAP_%d'%class_idx)] = t_mAP_update_op
t_mean_cls_loss, t_mean_cls_loss_op = tf.metrics.mean(
t_cls_loss,
name='mean_cls_loss')
t_mean_loc_loss, t_mean_loc_loss_op = tf.metrics.mean(
t_loc_loss,
name='mean_loc_loss')
t_mean_reg_loss, t_mean_reg_loss_op = tf.metrics.mean(
t_reg_loss,
name='mean_reg_loss')
t_mean_total_loss, t_mean_total_loss_op = tf.metrics.mean(
t_total_loss,
name='mean_total_loss')
metrics_update_ops = {
'cls_loss': t_mean_cls_loss_op,
'loc_loss': t_mean_loc_loss_op,
'reg_loss': t_mean_reg_loss_op,
'total_loss': t_mean_total_loss_op,}
metrics_update_ops.update(t_recall_update_ops)
metrics_update_ops.update(t_precision_update_ops)
metrics_update_ops.update(t_mAP_update_ops)
metrics_update_ops.update(t_classwise_loc_loss_update_ops)
# optimizers ================================================================
global_step = tf.Variable(0, dtype=tf.int32, trainable=False)
fetches = {
'step': global_step,
'predictions': t_predictions,
'pred_box': t_pred_box
}
fetches.update(metrics_update_ops)
# preprocessing data ========================================================
class DataProvider(object):
"""This class provides input data to training.
It has option to load dataset in memory so that preprocessing does not
repeat every time.
Note, if there is randomness inside graph creation, samples should be
reloaded for the randomness to take effect.
"""
def __init__(self, fetch_data, load_dataset_to_mem=True,
load_dataset_every_N_time=1, capacity=1):
self._fetch_data = fetch_data
self._loaded_data_dic = {}
self._loaded_data_ctr_dic = {}
self._load_dataset_to_mem = load_dataset_to_mem
self._load_every_N_time = load_dataset_every_N_time
self._capacity = capacity
def provide(self, frame_idx):
extend_frame_idx = frame_idx+np.random.choice(
self._capacity)*NUM_TEST_SAMPLE
if self._load_dataset_to_mem:
if extend_frame_idx in self._loaded_data_ctr_dic:
ctr = self._loaded_data_ctr_dic[extend_frame_idx]
if ctr >= self._load_every_N_time:
del self._loaded_data_ctr_dic[extend_frame_idx]
del self._loaded_data_dic[extend_frame_idx]
if frame_idx not in self._loaded_data_dic:
self._loaded_data_dic[extend_frame_idx] = self._fetch_data(
frame_idx)
self._loaded_data_ctr_dic[extend_frame_idx] = 0
self._loaded_data_ctr_dic[extend_frame_idx] += 1
return self._loaded_data_dic[extend_frame_idx]
else:
return self._fetch_data(frame_idx)
data_provider = DataProvider(fetch_data, load_dataset_to_mem=False)
saver = tf.train.Saver()
graph = tf.get_default_graph()
if eval_config['gpu_memusage'] < 0:
gpu_options = tf.GPUOptions(allow_growth=True)
else:
gpu_options = tf.GPUOptions(
per_process_gpu_memory_fraction=eval_config['gpu_memusage'])
def eval_once(graph, gpu_options, saver, checkpoint_path):
"""Evaluate the model once. """
with tf.Session(graph=graph,
config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
sess.run(tf.variables_initializer(tf.global_variables()))
sess.run(tf.variables_initializer(tf.local_variables()))
print('Restore from checkpoint %s' % checkpoint_path)
saver.restore(sess, checkpoint_path)
previous_step = sess.run(global_step)
print('Global step = %d' % previous_step)
start_time = time.time()
for frame_idx in range(NUM_TEST_SAMPLE):
(input_v, vertex_coord_list, keypoint_indices_list, edges_list,
cls_labels, encoded_boxes, valid_boxes)\
= data_provider.provide(frame_idx)
feed_dict = {
t_initial_vertex_features: input_v,
t_class_labels: cls_labels,
t_encoded_gt_boxes: encoded_boxes,
t_valid_gt_boxes: valid_boxes,
t_is_training: config['eval_is_training'],
}
feed_dict.update(dict(zip(t_edges_list, edges_list)))
feed_dict.update(
dict(zip(t_keypoint_indices_list, keypoint_indices_list)))
feed_dict.update(dict(zip(t_vertex_coord_list, vertex_coord_list)))
results = sess.run(fetches, feed_dict=feed_dict)
if NUM_TEST_SAMPLE >= 10:
if (frame_idx + 1) % (NUM_TEST_SAMPLE // 10) == 0:
print('@frame %d' % frame_idx)
print('cls:%f, loc:%f, reg:%f, loss: %f'
% (results['cls_loss'], results['loc_loss'],
results['reg_loss'], results['total_loss']))
for class_idx in range(NUM_CLASSES):
print('Class_%d: recall=%f, prec=%f, mAP=%f, loc=%f'
% (class_idx,
results['recall_%d'%class_idx],
results['precision_%d'%class_idx],
results['mAP_%d'%class_idx],
results['loc_loss_cls_%d'%class_idx]))
print(' '+\
'x=%.4f y=%.4f z=%.4f l=%.4f h=%.4f w=%.4f y=%.4f'
%(
results['loc_loss_cls_%d_box_%d'%(class_idx, 0)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 1)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 2)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 3)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 4)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 5)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 6)]),
)
print('STEP: %d, time cost: %f'
% (results['step'], time.time()-start_time))
print('cls:%f, loc:%f, reg:%f, loss: %f'
% (results['cls_loss'], results['loc_loss'], results['reg_loss'],
results['total_loss']))
for class_idx in range(NUM_CLASSES):
print('Class_%d: recall=%f, prec=%f, mAP=%f, loc=%f'
% (class_idx,
results['recall_%d'%class_idx],
results['precision_%d'%class_idx],
results['mAP_%d'%class_idx],
results['loc_loss_cls_%d'%class_idx]))
print(" x=%.4f y=%.4f z=%.4f l=%.4f h=%.4f w=%.4f y=%.4f"
%(
results['loc_loss_cls_%d_box_%d'%(class_idx, 0)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 1)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 2)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 3)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 4)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 5)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 6)]),
)
# add summaries ====================================================
for key in metrics_update_ops:
write_summary_scale(key, results[key], results['step'],
eval_config['eval_dir'])
return results['step']
def eval_repeat():
last_evaluated_model_path = None
while True:
previous_time = time.time()
model_path = tf.train.latest_checkpoint(eval_config['train_dir'])
if not model_path:
print('No checkpoint found in %s, wait for %f seconds'
% (eval_config['train_dir'], eval_config['eval_every_second']))
if last_evaluated_model_path == model_path:
print(
'Checkpoint %s has been evaluated already, wait for %f seconds'
% (model_path, eval_config['eval_every_second']))
else:
last_evaluated_model_path = model_path
current_step = eval_once(graph, gpu_options, saver, model_path)
if current_step >= eval_config['max_step']:
break
time_to_next_eval = (
previous_time + eval_config['eval_every_second'] - time.time())
if time_to_next_eval > 0:
time.sleep(time_to_next_eval)
if __name__ == '__main__':
eval_repeat()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。