代码拉取完成,页面将自动刷新
import tensorflow as tf
import numpy as np
from PIL import Image
def _activation_summary(x):
"""Helper to create summaries for activations.
Creates a summary that provides a histogram of activations.
Creates a summary that measure the sparsity of activations.
Args:
x: Tensor
Returns:
nothing
"""
# session. This helps the clarity of presentation on tensorboard.
tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
tf.summary.histogram(tensor_name + '/activations', x)
tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
def _add_loss_summaries(total_loss):
"""Add summaries for losses in CIFAR-10 model.
Generates moving average for all losses and associated summaries for
visualizing the performance of the network.
Args:
total_loss: Total loss from loss().
Returns:
loss_averages_op: op for generating moving averages of losses.
"""
# Compute the moving average of all individual losses and the total loss.
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
losses = tf.get_collection('losses')
loss_averages_op = loss_averages.apply(losses + [total_loss])
# Attach a scalar summary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
for l in losses + [total_loss]:
# Name each loss as '(raw)' and name the moving average version of the loss
# as the original loss name.
tf.summary.scalar(l.op.name +' (raw)', l)
tf.summary.scalar(l.op.name, loss_averages.average(l))
return loss_averages_op
def _variable_on_cpu(name, shape, initializer):
"""Helper to create a Variable stored on CPU memory.
Args:
name: name of the variable
shape: list of ints
initializer: initializer for Variable
Returns:
Variable Tensor
"""
with tf.device('/gpu:0'):
var = tf.get_variable(name, shape, initializer=initializer)
return var
def _variable_with_weight_decay(name, shape, initializer, wd):
"""Helper to create an initialized Variable with weight decay.
Note that the Variable is initialized with a truncated normal distribution.
A weight decay is added only if one is specified.
Args:
name: name of the variable
shape: list of ints
stddev: standard deviation of a truncated Gaussian
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable.
Returns:
Variable Tensor
"""
var = _variable_on_cpu(
name,
shape,
initializer)
if wd is not None:
weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
def writeImage(image, filename):
""" store label data to colored image """
Sky = [128,128,128]
Building = [128,0,0]
Pole = [192,192,128]
Road_marking = [255,69,0]
Road = [128,64,128]
Pavement = [60,40,222]
Tree = [128,128,0]
SignSymbol = [192,128,128]
Fence = [64,64,128]
Car = [64,0,128]
Pedestrian = [64,64,0]
Bicyclist = [0,128,192]
Unlabelled = [0,0,0]
r = image.copy()
g = image.copy()
b = image.copy()
label_colours = np.array([Sky, Building, Pole, Road_marking, Road, Pavement, Tree, SignSymbol, Fence, Car, Pedestrian, Bicyclist, Unlabelled])
for l in range(0,12):
r[image==l] = label_colours[l,0]
g[image==l] = label_colours[l,1]
b[image==l] = label_colours[l,2]
rgb = np.zeros((image.shape[0], image.shape[1], 3))
rgb[:,:,0] = r/1.0
rgb[:,:,1] = g/1.0
rgb[:,:,2] = b/1.0
im = Image.fromarray(np.uint8(rgb))
im.save(filename)
def storeImageQueue(data, labels, step):
""" data and labels are all numpy arrays """
for i in range(BATCH_SIZE):
index = 0
im = data[i]
la = labels[i]
im = Image.fromarray(np.uint8(im))
im.save("batch_im_s%d_%d.png"%(step,i))
writeImage(np.reshape(la,(360,480)), "batch_la_s%d_%d.png"%(step,i))
def fast_hist(a, b, n):
k = (a >= 0) & (a < n)
return np.bincount(n * a[k].astype(int) + b[k], minlength=n**2).reshape(n, n)
def get_hist(predictions, labels):
num_class = predictions.shape[3]
batch_size = predictions.shape[0]
hist = np.zeros((num_class, num_class))
for i in range(batch_size):
hist += fast_hist(labels[i].flatten(), predictions[i].argmax(2).flatten(), num_class)
return hist
def print_hist_summery(hist):
acc_total = np.diag(hist).sum() / hist.sum()
print ('accuracy = %f'%np.nanmean(acc_total))
iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist))
print ('mean IU = %f'%np.nanmean(iu))
for ii in range(hist.shape[0]):
if float(hist.sum(1)[ii]) == 0:
acc = 0.0
else:
acc = np.diag(hist)[ii] / float(hist.sum(1)[ii])
print(" class # %d accuracy = %f "%(ii, acc))
def per_class_acc(predictions, label_tensor):
labels = label_tensor
size = predictions.shape[0]
num_class = predictions.shape[3]
hist = np.zeros((num_class, num_class))
for i in range(size):
hist += fast_hist(labels[i].flatten(), predictions[i].argmax(2).flatten(), num_class)
acc_total = np.diag(hist).sum() / hist.sum()
print ('accuracy = %f'%np.nanmean(acc_total))
iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist))
print ('mean IU = %f'%np.nanmean(iu))
for ii in range(num_class):
if float(hist.sum(1)[ii]) == 0:
acc = 0.0
else:
acc = np.diag(hist)[ii] / float(hist.sum(1)[ii])
print(" class # %d accuracy = %f "%(ii,acc))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。