1 Star 1 Fork 1

娄维尧/3D-Lung-nodules-detection

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
net_classifier.py 6.88 KB
一键复制 编辑 原始数据 按行查看 历史
royce.mao 提交于 2018-12-29 15:45 . CT影像分析
import torch
from torch import nn
from layers import *
from torch.nn import DataParallel
from torch.backends import cudnn
from torch.utils.data import DataLoader
from torch import optim
from torch.autograd import Variable
from torch.utils.data import Dataset
from scipy.ndimage.interpolation import rotate
import numpy as np
import os
config = {}
config['topk'] = 5
config['resample'] = None
config['datadir'] = '/run/shm/preprocess_1_3/'
config['preload_train'] = True
config['bboxpath'] = '../cpliangming/results/res18_prep3/bbox/'
config['labelfile'] = '../stage1_labels.csv'
config['preload_val'] = True
config['padmask'] = False
config['crop_size'] = [96,96,96]
config['scaleLim'] = [0.85,1.15]
config['radiusLim'] = [6,100]
config['jitter_range'] = 0.15
config['isScale'] = True
config['random_sample'] = True
config['T'] = 1
config['topk'] = 5
config['stride'] = 4
config['augtype'] = {'flip':True,'swap':False,'rotate':False,'scale':False}
config['detect_th'] = 0.05
config['conf_th'] = -1
config['nms_th'] = 0.05
config['filling_value'] = 160
config['startepoch'] = 20
config['lr_stage'] = np.array([50,100,140,160])
config['lr'] = [0.01,0.001,0.0001,0.00001]
config['miss_ratio'] = 1
config['miss_thresh'] = 0.03
config['anchors'] = [10,30,60]
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# The first few layers consumes the most memory, so use simple convolution to save memory.
# Call these layers preBlock, i.e., before the residual blocks of later layers.
self.preBlock = nn.Sequential(
nn.Conv3d(1, 24, kernel_size = 3, padding = 1),
nn.BatchNorm3d(24),
nn.ReLU(inplace = True),
nn.Conv3d(24, 24, kernel_size = 3, padding = 1),
nn.BatchNorm3d(24),
nn.ReLU(inplace = True))
# 3 poolings, each pooling downsamples the feature map by a factor 2.
# 3 groups of blocks. The first block of each group has one pooling.
num_blocks_forw = [2,2,3,3]
num_blocks_back = [3,3]
self.featureNum_forw = [24,32,64,64,64]
self.featureNum_back = [128,64,64]
for i in range(len(num_blocks_forw)):
blocks = []
for j in range(num_blocks_forw[i]):
if j == 0:
blocks.append(PostRes(self.featureNum_forw[i], self.featureNum_forw[i+1]))
else:
blocks.append(PostRes(self.featureNum_forw[i+1], self.featureNum_forw[i+1]))
setattr(self, 'forw' + str(i + 1), nn.Sequential(*blocks))
for i in range(len(num_blocks_back)):
blocks = []
for j in range(num_blocks_back[i]):
if j == 0:
if i==0:
addition = 3
else:
addition = 0
blocks.append(PostRes(self.featureNum_back[i+1]+self.featureNum_forw[i+2]+addition, self.featureNum_back[i]))
else:
blocks.append(PostRes(self.featureNum_back[i], self.featureNum_back[i]))
setattr(self, 'back' + str(i + 2), nn.Sequential(*blocks))
self.maxpool1 = nn.MaxPool3d(kernel_size=2,stride=2,return_indices =True)
self.maxpool2 = nn.MaxPool3d(kernel_size=2,stride=2,return_indices =True)
self.maxpool3 = nn.MaxPool3d(kernel_size=2,stride=2,return_indices =True)
self.maxpool4 = nn.MaxPool3d(kernel_size=2,stride=2,return_indices =True)
self.unmaxpool1 = nn.MaxUnpool3d(kernel_size=2,stride=2)
self.unmaxpool2 = nn.MaxUnpool3d(kernel_size=2,stride=2)
self.path1 = nn.Sequential(
nn.ConvTranspose3d(64, 64, kernel_size = 2, stride = 2),
nn.BatchNorm3d(64),
nn.ReLU(inplace = True))
self.path2 = nn.Sequential(
nn.ConvTranspose3d(64, 64, kernel_size = 2, stride = 2),
nn.BatchNorm3d(64),
nn.ReLU(inplace = True))
self.drop = nn.Dropout3d(p = 0.2, inplace = False)
self.output = nn.Sequential(nn.Conv3d(self.featureNum_back[0], 64, kernel_size = 1),
nn.ReLU(),
#nn.Dropout3d(p = 0.3),
nn.Conv3d(64, 5 * len(config['anchors']), kernel_size = 1))
def forward(self, x, coord):
out = self.preBlock(x)#16
out_pool,indices0 = self.maxpool1(out)
out1 = self.forw1(out_pool)#32
out1_pool,indices1 = self.maxpool2(out1)
out2 = self.forw2(out1_pool)#64
#out2 = self.drop(out2)
out2_pool,indices2 = self.maxpool3(out2)
out3 = self.forw3(out2_pool)#96
out3_pool,indices3 = self.maxpool4(out3)
out4 = self.forw4(out3_pool)#96
#out4 = self.drop(out4)
rev3 = self.path1(out4)
comb3 = self.back3(torch.cat((rev3, out3), 1))#96+96
#comb3 = self.drop(comb3)
rev2 = self.path2(comb3)
feat = self.back2(torch.cat((rev2, out2,coord), 1))#64+64
comb2 = self.drop(feat)
out = self.output(comb2)
size = out.size()
out = out.view(out.size(0), out.size(1), -1)
#out = out.transpose(1, 4).transpose(1, 2).transpose(2, 3).contiguous()
out = out.transpose(1, 2).contiguous().view(size[0], size[2], size[3], size[4], len(config['anchors']), 5)
#out = out.view(-1, 5)
return feat,out
class CaseNet(nn.Module):
def __init__(self,topk):
super(CaseNet,self).__init__()
self.NoduleNet = Net()
self.fc1 = nn.Linear(128,64)
self.fc2 = nn.Linear(64,1)
self.pool = nn.MaxPool3d(kernel_size=2)
self.dropout = nn.Dropout(0.5)
self.baseline = nn.Parameter(torch.Tensor([-30.0]).float())
self.Relu = nn.ReLU()
def forward(self,xlist,coordlist):
# xlist: n x k x 1x 96 x 96 x 96
# coordlist: n x k x 3 x 24 x 24 x 24
xsize = xlist.size()
corrdsize = coordlist.size()
xlist = xlist.view(-1,xsize[2],xsize[3],xsize[4],xsize[5])
coordlist = coordlist.view(-1,corrdsize[2],corrdsize[3],corrdsize[4],corrdsize[5])
noduleFeat,nodulePred = self.NoduleNet(xlist,coordlist)
nodulePred = nodulePred.contiguous().view(corrdsize[0],corrdsize[1],-1)
featshape = noduleFeat.size()#nk x 128 x 24 x 24 x24
centerFeat = self.pool(noduleFeat[:,:,featshape[2]/2-1:featshape[2]/2+1,
featshape[3]/2-1:featshape[3]/2+1,
featshape[4]/2-1:featshape[4]/2+1])
centerFeat = centerFeat[:,:,0,0,0]
out = self.dropout(centerFeat)
out = self.Relu(self.fc1(out))
out = torch.sigmoid(self.fc2(out))
out = out.view(xsize[0],xsize[1])
base_prob = torch.sigmoid(self.baseline)
casePred = 1-torch.prod(1-out,dim=1)*(1-base_prob.expand(out.size()[0]))
return nodulePred,casePred,out
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/lou_wei_yao/Lung-nodules-detection.git
git@gitee.com:lou_wei_yao/Lung-nodules-detection.git
lou_wei_yao
Lung-nodules-detection
3D-Lung-nodules-detection
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385