代码拉取完成,页面将自动刷新
import torch
from torch import nn
from layers import *
from torch.nn import DataParallel
from torch.backends import cudnn
from torch.utils.data import DataLoader
from torch import optim
from torch.autograd import Variable
from torch.utils.data import Dataset
from scipy.ndimage.interpolation import rotate
import numpy as np
import os
config = {}
config['topk'] = 5
config['resample'] = None
config['datadir'] = '/run/shm/preprocess_1_3/'
config['preload_train'] = True
config['bboxpath'] = '../cpliangming/results/res18_prep3/bbox/'
config['labelfile'] = '../stage1_labels.csv'
config['preload_val'] = True
config['padmask'] = False
config['crop_size'] = [96,96,96]
config['scaleLim'] = [0.85,1.15]
config['radiusLim'] = [6,100]
config['jitter_range'] = 0.15
config['isScale'] = True
config['random_sample'] = True
config['T'] = 1
config['topk'] = 5
config['stride'] = 4
config['augtype'] = {'flip':True,'swap':False,'rotate':False,'scale':False}
config['detect_th'] = 0.05
config['conf_th'] = -1
config['nms_th'] = 0.05
config['filling_value'] = 160
config['startepoch'] = 20
config['lr_stage'] = np.array([50,100,140,160])
config['lr'] = [0.01,0.001,0.0001,0.00001]
config['miss_ratio'] = 1
config['miss_thresh'] = 0.03
config['anchors'] = [10,30,60]
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# The first few layers consumes the most memory, so use simple convolution to save memory.
# Call these layers preBlock, i.e., before the residual blocks of later layers.
self.preBlock = nn.Sequential(
nn.Conv3d(1, 24, kernel_size = 3, padding = 1),
nn.BatchNorm3d(24),
nn.ReLU(inplace = True),
nn.Conv3d(24, 24, kernel_size = 3, padding = 1),
nn.BatchNorm3d(24),
nn.ReLU(inplace = True))
# 3 poolings, each pooling downsamples the feature map by a factor 2.
# 3 groups of blocks. The first block of each group has one pooling.
num_blocks_forw = [2,2,3,3]
num_blocks_back = [3,3]
self.featureNum_forw = [24,32,64,64,64]
self.featureNum_back = [128,64,64]
for i in range(len(num_blocks_forw)):
blocks = []
for j in range(num_blocks_forw[i]):
if j == 0:
blocks.append(PostRes(self.featureNum_forw[i], self.featureNum_forw[i+1]))
else:
blocks.append(PostRes(self.featureNum_forw[i+1], self.featureNum_forw[i+1]))
setattr(self, 'forw' + str(i + 1), nn.Sequential(*blocks))
for i in range(len(num_blocks_back)):
blocks = []
for j in range(num_blocks_back[i]):
if j == 0:
if i==0:
addition = 3
else:
addition = 0
blocks.append(PostRes(self.featureNum_back[i+1]+self.featureNum_forw[i+2]+addition, self.featureNum_back[i]))
else:
blocks.append(PostRes(self.featureNum_back[i], self.featureNum_back[i]))
setattr(self, 'back' + str(i + 2), nn.Sequential(*blocks))
self.maxpool1 = nn.MaxPool3d(kernel_size=2,stride=2,return_indices =True)
self.maxpool2 = nn.MaxPool3d(kernel_size=2,stride=2,return_indices =True)
self.maxpool3 = nn.MaxPool3d(kernel_size=2,stride=2,return_indices =True)
self.maxpool4 = nn.MaxPool3d(kernel_size=2,stride=2,return_indices =True)
self.unmaxpool1 = nn.MaxUnpool3d(kernel_size=2,stride=2)
self.unmaxpool2 = nn.MaxUnpool3d(kernel_size=2,stride=2)
self.path1 = nn.Sequential(
nn.ConvTranspose3d(64, 64, kernel_size = 2, stride = 2),
nn.BatchNorm3d(64),
nn.ReLU(inplace = True))
self.path2 = nn.Sequential(
nn.ConvTranspose3d(64, 64, kernel_size = 2, stride = 2),
nn.BatchNorm3d(64),
nn.ReLU(inplace = True))
self.drop = nn.Dropout3d(p = 0.2, inplace = False)
self.output = nn.Sequential(nn.Conv3d(self.featureNum_back[0], 64, kernel_size = 1),
nn.ReLU(),
#nn.Dropout3d(p = 0.3),
nn.Conv3d(64, 5 * len(config['anchors']), kernel_size = 1))
def forward(self, x, coord):
out = self.preBlock(x)#16
out_pool,indices0 = self.maxpool1(out)
out1 = self.forw1(out_pool)#32
out1_pool,indices1 = self.maxpool2(out1)
out2 = self.forw2(out1_pool)#64
#out2 = self.drop(out2)
out2_pool,indices2 = self.maxpool3(out2)
out3 = self.forw3(out2_pool)#96
out3_pool,indices3 = self.maxpool4(out3)
out4 = self.forw4(out3_pool)#96
#out4 = self.drop(out4)
rev3 = self.path1(out4)
comb3 = self.back3(torch.cat((rev3, out3), 1))#96+96
#comb3 = self.drop(comb3)
rev2 = self.path2(comb3)
feat = self.back2(torch.cat((rev2, out2,coord), 1))#64+64
comb2 = self.drop(feat)
out = self.output(comb2)
size = out.size()
out = out.view(out.size(0), out.size(1), -1)
#out = out.transpose(1, 4).transpose(1, 2).transpose(2, 3).contiguous()
out = out.transpose(1, 2).contiguous().view(size[0], size[2], size[3], size[4], len(config['anchors']), 5)
#out = out.view(-1, 5)
return feat,out
class CaseNet(nn.Module):
def __init__(self,topk):
super(CaseNet,self).__init__()
self.NoduleNet = Net()
self.fc1 = nn.Linear(128,64)
self.fc2 = nn.Linear(64,1)
self.pool = nn.MaxPool3d(kernel_size=2)
self.dropout = nn.Dropout(0.5)
self.baseline = nn.Parameter(torch.Tensor([-30.0]).float())
self.Relu = nn.ReLU()
def forward(self,xlist,coordlist):
# xlist: n x k x 1x 96 x 96 x 96
# coordlist: n x k x 3 x 24 x 24 x 24
xsize = xlist.size()
corrdsize = coordlist.size()
xlist = xlist.view(-1,xsize[2],xsize[3],xsize[4],xsize[5])
coordlist = coordlist.view(-1,corrdsize[2],corrdsize[3],corrdsize[4],corrdsize[5])
noduleFeat,nodulePred = self.NoduleNet(xlist,coordlist)
nodulePred = nodulePred.contiguous().view(corrdsize[0],corrdsize[1],-1)
featshape = noduleFeat.size()#nk x 128 x 24 x 24 x24
centerFeat = self.pool(noduleFeat[:,:,featshape[2]/2-1:featshape[2]/2+1,
featshape[3]/2-1:featshape[3]/2+1,
featshape[4]/2-1:featshape[4]/2+1])
centerFeat = centerFeat[:,:,0,0,0]
out = self.dropout(centerFeat)
out = self.Relu(self.fc1(out))
out = torch.sigmoid(self.fc2(out))
out = out.view(xsize[0],xsize[1])
base_prob = torch.sigmoid(self.baseline)
casePred = 1-torch.prod(1-out,dim=1)*(1-base_prob.expand(out.size()[0]))
return nodulePred,casePred,out
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。