代码拉取完成,页面将自动刷新
import sys
import torch
import os
from torchvision import models
from PyQt5.QtCore import pyqtSlot, QDir, pyqtSignal
from PyQt5.QtWidgets import QWidget, QApplication, QMessageBox,QFileDialog
from PyQt5.QtGui import QPixmap
from gui import Ui_Form
import simplified_train
import json
from prediction import Prediction
import simplified_export
import threading
from torchvision import models
class ClassificationGui(QWidget):
def __init__(self, parent=None):
super().__init__(parent)
self.ui = Ui_Form()
self.ui.setupUi(self)
self.ui.rb_pretrained.toggled.connect(lambda: self.on_rb_clicked(self.ui.rb_pretrained))
self.ui.rb_retrained.toggled.connect(lambda: self.on_rb_clicked(self.ui.rb_retrained))
self.ui.rb_retrained.setChecked(True)
self.ui.cb_model_prediction.currentIndexChanged.connect(self.on_cb_model_prediction)
self.model_names = self.get_model_names()
# train
self.load_arg('args.txt')
self.controller_ini()
# predict
self.predict_model = None
self.classes = []
self.predict_image = None
self.prediction = Prediction(self.predict_model, self.classes)
def controller_ini(self):
self.ui.le_data.setText(self.dict['data'])
self.ui.le_moder_dir.setText(self.dict['model_dir'])
self.ui.le_resume.setText(self.dict['resume'])
self.ui.le_epochs.setText(str(self.dict['epochs']))
self.ui.le_learning_rate.setText(str(self.dict['lr']))
self.ui.le_batch_size.setText(str(self.dict['batch_size']))
self.ui.cb_model_names.addItems(self.model_names)
self.ui.cb_model_prediction.addItems(self.model_names)
for index in range(self.ui.cb_model_names.count()):
if self.dict['arch'] == self.ui.cb_model_names.itemText(index):
self.ui.cb_model_names.setCurrentIndex(index)
self.ui.cb_workers.setCurrentIndex(self.dict['workers'])
def get_avg(self):
self.dict['data'] = self.ui.le_data.text() + ''
self.dict['model_dir'] = self.ui.le_moder_dir.text() + ''
if self.ui.ch_checkpoint.isChecked():
self.dict['resume'] = self.ui.le_resume.text() + ''
else:
self.dict['resume'] = ''
self.dict['epochs'] = int(self.ui.le_epochs.text())
self.dict['lr'] = float(self.ui.le_learning_rate.text())
self.dict['batch_size'] = int(self.ui.le_batch_size.text())
self.dict['arch'] = self.ui.cb_model_names.currentText()
self.dict['workers'] = self.ui.cb_workers.currentIndex()
def load_arg(self, file_name):
with open(file_name, 'r') as f:
self.dict = json.load(f)
def save_age(self):
self.get_avg()
with open('args.txt', 'w') as f:
json.dump(self.dict, f, indent=2)
def get_model_names(self):
return sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
def load_pretrained_model(self):
if self.ui.cb_model_prediction.currentIndex() > 0:
self.prediction.load_pretrained_model(self.ui.cb_model_prediction.currentText(), "imagenet_classes.txt")
def load_retrained_model(self):
model_path = self.ui.le_model.text().strip()
classes_path = self.ui.le_classes.text().strip()
if len(model_path) > 0 and len(classes_path) > 0:
self.prediction.load_retrained_model(model_path=model_path, classes=classes_path)
def do_predict(self, image):
self.ui.lab_image.setPixmap(QPixmap(image))
result = self.prediction.predict(image)
text = ""
if result:
for name, pre in result:
text += "{}({:0.2f}%)<br/>".format(name, pre)
self.ui.lab_result.setText(text)
def do_train(self):
simplified_train.main()
#t = threading.Thread(target=simplified_train.main)
#.setDaemon(True)
#t.start()
#t.join()
# 以下为事件处理函数
# train
@pyqtSlot()
def on_btn_data_dir_clicked(self):
cur_path = QDir.currentPath()
selected_dir = QFileDialog.getExistingDirectory(self, "选择训练图像的路径", cur_path, QFileDialog.ShowDirsOnly)
self.ui.le_data.setText(selected_dir + '')
@pyqtSlot()
def on_btn_model_dir_clicked(self):
cur_path = QDir.currentPath()
selected_dir = QFileDialog.getExistingDirectory(self, "选择模型保存的路径", cur_path, QFileDialog.ShowDirsOnly)
self.ui.le_moder_dir.setText(selected_dir + '')
@pyqtSlot()
def on_btn_checkpoint_clicked(self):
cur_path = QDir.currentPath()
filt = "pth.tar文件(*.tar)"
filename, filtUsed = QFileDialog.getOpenFileName(self, "请选择监测点模型文件", cur_path, filt)
if filtUsed:
self.ui.le_resume.setText(filename + '')
print(filtUsed)
@pyqtSlot()
def on_btn_load_default_clicked(self):
dlgtitle = "消息框"
strInfo = "导入默认参数将覆盖当前设置的参数!,是否继续导入?"
defaultBtn = QMessageBox.No
result = QMessageBox.question(self, dlgtitle, strInfo, QMessageBox.Yes | QMessageBox.No, defaultBtn)
if result == QMessageBox.Yes:
self.load_arg('default_args.txt')
self.controller_ini()
@pyqtSlot()
def on_btn_save_clicked(self):
self.save_age()
dlgtitle = "消息框"
strInfo = "训练参数保存成功!,是否开始训练?"
defaultBtn = QMessageBox.No
result = QMessageBox.question(self, dlgtitle, strInfo, QMessageBox.Yes | QMessageBox.No, defaultBtn)
if result == QMessageBox.Yes:
self.do_train()
@pyqtSlot()
def on_btn_train_clicked(self):
self.do_train()
# predict
@pyqtSlot()
def on_btn_model_clicked(self):
cur_path = QDir.currentPath()
filt = "pth.tar文件(*.tar)"
filename, filtUsed = QFileDialog.getOpenFileName(self, "请选择模型文件", cur_path, filt)
if filtUsed:
self.ui.le_model.setText(filename)
self.load_retrained_model()
@pyqtSlot()
def on_btn_classes_clicked(self):
cur_path = QDir.currentPath()
filt = "txt文件(*.txt)"
filename, filtUsed = QFileDialog.getOpenFileName(self, "类名文件", cur_path, filt)
if filtUsed:
self.ui.le_classes.setText(filename)
self.load_retrained_model()
@pyqtSlot()
def on_btn_image_clicked(self):
if self.dict['temp_dir'] == "":
cur_path = QDir.currentPath()
else:
cur_path = self.dict['temp_dir']
filt = "图片文件(*.jpg) ;; 图片文件(*.png);;All(*.*)"
filename, filtUsed = QFileDialog.getOpenFileName(self, "请选择预测图片", cur_path, filt)
if filtUsed:
self.dict['temp_dir'] = os.path.dirname(os.path.realpath(filename))
self.ui.le_image.setText(filename)
self.do_predict(filename)
@pyqtSlot()
def on_rb_clicked(self, rb):
if rb.objectName() == "rb_pretrained":
self.ui.cb_model_prediction.setEnabled(rb.isChecked())
else:
self.ui.le_model.setEnabled(rb.isChecked())
self.ui.btn_classes.setEnabled(rb.isChecked())
self.ui.le_classes.setEnabled(rb.isChecked())
self.ui.btn_model.setEnabled(rb.isChecked())
@pyqtSlot()
def on_cb_model_prediction(self):
self.load_pretrained_model()
# export
@pyqtSlot()
def on_btn_export_clicked(self):
model_path = self.ui.le_export_model.text()
export_dir = self.ui.le_onnx_dir.text()
if len(model_path) > 0 and len(export_dir) > 0:
simplified_export.export(model_path, export_dir)
@pyqtSlot()
def on_btn_export_model_clicked(self):
cur_path = QDir.currentPath()
filt = "pth.tar文件(*.tar)"
filename, filtUsed = QFileDialog.getOpenFileName(self, "请选择模型文件", cur_path, filt)
if filtUsed:
self.ui.le_export_model.setText(filename)
@pyqtSlot()
def on_btn_export_dir_clicked(self):
cur_path = QDir.currentPath()
selected_dir = QFileDialog.getExistingDirectory(self, "请选择onnx模型的保存路径", cur_path, QFileDialog.ShowDirsOnly)
self.ui.le_onnx_dir.setText(selected_dir + '')
if __name__ == '__main__':
app = QApplication(sys.argv)
gui = ClassificationGui()
gui.show()
sys.exit(app.exec_())
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。