1 Star 1 Fork 1

lonerlin/classification

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
classification_gui.py 8.50 KB
一键复制 编辑 原始数据 按行查看 历史
lonerlin 提交于 2021-09-09 21:35 . 图片路径选择
import sys
import torch
import os
from torchvision import models
from PyQt5.QtCore import pyqtSlot, QDir, pyqtSignal
from PyQt5.QtWidgets import QWidget, QApplication, QMessageBox,QFileDialog
from PyQt5.QtGui import QPixmap
from gui import Ui_Form
import simplified_train
import json
from prediction import Prediction
import simplified_export
import threading
from torchvision import models
class ClassificationGui(QWidget):
def __init__(self, parent=None):
super().__init__(parent)
self.ui = Ui_Form()
self.ui.setupUi(self)
self.ui.rb_pretrained.toggled.connect(lambda: self.on_rb_clicked(self.ui.rb_pretrained))
self.ui.rb_retrained.toggled.connect(lambda: self.on_rb_clicked(self.ui.rb_retrained))
self.ui.rb_retrained.setChecked(True)
self.ui.cb_model_prediction.currentIndexChanged.connect(self.on_cb_model_prediction)
self.model_names = self.get_model_names()
# train
self.load_arg('args.txt')
self.controller_ini()
# predict
self.predict_model = None
self.classes = []
self.predict_image = None
self.prediction = Prediction(self.predict_model, self.classes)
def controller_ini(self):
self.ui.le_data.setText(self.dict['data'])
self.ui.le_moder_dir.setText(self.dict['model_dir'])
self.ui.le_resume.setText(self.dict['resume'])
self.ui.le_epochs.setText(str(self.dict['epochs']))
self.ui.le_learning_rate.setText(str(self.dict['lr']))
self.ui.le_batch_size.setText(str(self.dict['batch_size']))
self.ui.cb_model_names.addItems(self.model_names)
self.ui.cb_model_prediction.addItems(self.model_names)
for index in range(self.ui.cb_model_names.count()):
if self.dict['arch'] == self.ui.cb_model_names.itemText(index):
self.ui.cb_model_names.setCurrentIndex(index)
self.ui.cb_workers.setCurrentIndex(self.dict['workers'])
def get_avg(self):
self.dict['data'] = self.ui.le_data.text() + ''
self.dict['model_dir'] = self.ui.le_moder_dir.text() + ''
if self.ui.ch_checkpoint.isChecked():
self.dict['resume'] = self.ui.le_resume.text() + ''
else:
self.dict['resume'] = ''
self.dict['epochs'] = int(self.ui.le_epochs.text())
self.dict['lr'] = float(self.ui.le_learning_rate.text())
self.dict['batch_size'] = int(self.ui.le_batch_size.text())
self.dict['arch'] = self.ui.cb_model_names.currentText()
self.dict['workers'] = self.ui.cb_workers.currentIndex()
def load_arg(self, file_name):
with open(file_name, 'r') as f:
self.dict = json.load(f)
def save_age(self):
self.get_avg()
with open('args.txt', 'w') as f:
json.dump(self.dict, f, indent=2)
def get_model_names(self):
return sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
def load_pretrained_model(self):
if self.ui.cb_model_prediction.currentIndex() > 0:
self.prediction.load_pretrained_model(self.ui.cb_model_prediction.currentText(), "imagenet_classes.txt")
def load_retrained_model(self):
model_path = self.ui.le_model.text().strip()
classes_path = self.ui.le_classes.text().strip()
if len(model_path) > 0 and len(classes_path) > 0:
self.prediction.load_retrained_model(model_path=model_path, classes=classes_path)
def do_predict(self, image):
self.ui.lab_image.setPixmap(QPixmap(image))
result = self.prediction.predict(image)
text = ""
if result:
for name, pre in result:
text += "{}({:0.2f}%)<br/>".format(name, pre)
self.ui.lab_result.setText(text)
def do_train(self):
simplified_train.main()
#t = threading.Thread(target=simplified_train.main)
#.setDaemon(True)
#t.start()
#t.join()
# 以下为事件处理函数
# train
@pyqtSlot()
def on_btn_data_dir_clicked(self):
cur_path = QDir.currentPath()
selected_dir = QFileDialog.getExistingDirectory(self, "选择训练图像的路径", cur_path, QFileDialog.ShowDirsOnly)
self.ui.le_data.setText(selected_dir + '')
@pyqtSlot()
def on_btn_model_dir_clicked(self):
cur_path = QDir.currentPath()
selected_dir = QFileDialog.getExistingDirectory(self, "选择模型保存的路径", cur_path, QFileDialog.ShowDirsOnly)
self.ui.le_moder_dir.setText(selected_dir + '')
@pyqtSlot()
def on_btn_checkpoint_clicked(self):
cur_path = QDir.currentPath()
filt = "pth.tar文件(*.tar)"
filename, filtUsed = QFileDialog.getOpenFileName(self, "请选择监测点模型文件", cur_path, filt)
if filtUsed:
self.ui.le_resume.setText(filename + '')
print(filtUsed)
@pyqtSlot()
def on_btn_load_default_clicked(self):
dlgtitle = "消息框"
strInfo = "导入默认参数将覆盖当前设置的参数!,是否继续导入?"
defaultBtn = QMessageBox.No
result = QMessageBox.question(self, dlgtitle, strInfo, QMessageBox.Yes | QMessageBox.No, defaultBtn)
if result == QMessageBox.Yes:
self.load_arg('default_args.txt')
self.controller_ini()
@pyqtSlot()
def on_btn_save_clicked(self):
self.save_age()
dlgtitle = "消息框"
strInfo = "训练参数保存成功!,是否开始训练?"
defaultBtn = QMessageBox.No
result = QMessageBox.question(self, dlgtitle, strInfo, QMessageBox.Yes | QMessageBox.No, defaultBtn)
if result == QMessageBox.Yes:
self.do_train()
@pyqtSlot()
def on_btn_train_clicked(self):
self.do_train()
# predict
@pyqtSlot()
def on_btn_model_clicked(self):
cur_path = QDir.currentPath()
filt = "pth.tar文件(*.tar)"
filename, filtUsed = QFileDialog.getOpenFileName(self, "请选择模型文件", cur_path, filt)
if filtUsed:
self.ui.le_model.setText(filename)
self.load_retrained_model()
@pyqtSlot()
def on_btn_classes_clicked(self):
cur_path = QDir.currentPath()
filt = "txt文件(*.txt)"
filename, filtUsed = QFileDialog.getOpenFileName(self, "类名文件", cur_path, filt)
if filtUsed:
self.ui.le_classes.setText(filename)
self.load_retrained_model()
@pyqtSlot()
def on_btn_image_clicked(self):
if self.dict['temp_dir'] == "":
cur_path = QDir.currentPath()
else:
cur_path = self.dict['temp_dir']
filt = "图片文件(*.jpg) ;; 图片文件(*.png);;All(*.*)"
filename, filtUsed = QFileDialog.getOpenFileName(self, "请选择预测图片", cur_path, filt)
if filtUsed:
self.dict['temp_dir'] = os.path.dirname(os.path.realpath(filename))
self.ui.le_image.setText(filename)
self.do_predict(filename)
@pyqtSlot()
def on_rb_clicked(self, rb):
if rb.objectName() == "rb_pretrained":
self.ui.cb_model_prediction.setEnabled(rb.isChecked())
else:
self.ui.le_model.setEnabled(rb.isChecked())
self.ui.btn_classes.setEnabled(rb.isChecked())
self.ui.le_classes.setEnabled(rb.isChecked())
self.ui.btn_model.setEnabled(rb.isChecked())
@pyqtSlot()
def on_cb_model_prediction(self):
self.load_pretrained_model()
# export
@pyqtSlot()
def on_btn_export_clicked(self):
model_path = self.ui.le_export_model.text()
export_dir = self.ui.le_onnx_dir.text()
if len(model_path) > 0 and len(export_dir) > 0:
simplified_export.export(model_path, export_dir)
@pyqtSlot()
def on_btn_export_model_clicked(self):
cur_path = QDir.currentPath()
filt = "pth.tar文件(*.tar)"
filename, filtUsed = QFileDialog.getOpenFileName(self, "请选择模型文件", cur_path, filt)
if filtUsed:
self.ui.le_export_model.setText(filename)
@pyqtSlot()
def on_btn_export_dir_clicked(self):
cur_path = QDir.currentPath()
selected_dir = QFileDialog.getExistingDirectory(self, "请选择onnx模型的保存路径", cur_path, QFileDialog.ShowDirsOnly)
self.ui.le_onnx_dir.setText(selected_dir + '')
if __name__ == '__main__':
app = QApplication(sys.argv)
gui = ClassificationGui()
gui.show()
sys.exit(app.exec_())
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/lonerlin/classification.git
git@gitee.com:lonerlin/classification.git
lonerlin
classification
classification
master

搜索帮助