代码拉取完成,页面将自动刷新
同步操作将从 xiaoyi-tyut/NoduleNet 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import numpy as np
import torch
import os
import traceback
import time
import nrrd
import sys
import matplotlib.pyplot as plt
import logging
import argparse
import torch.nn.functional as F
import SimpleITK as sitk
from scipy.stats import norm
from torch.utils.data import DataLoader
from tqdm import tqdm
from torch.autograd import Variable
from torch.nn.parallel.data_parallel import data_parallel
from scipy.ndimage.measurements import label
from scipy.ndimage import center_of_mass
from net.nodule_net import NoduleNet
from dataset.collate import train_collate, test_collate, eval_collate
from dataset.bbox_reader import BboxReader
from dataset.mask_reader import MaskReader
from config import config
from utils.visualize import draw_gt, draw_pred, generate_image_anim
from utils.util import dice_score_seperate, get_contours_from_masks, merge_contours, hausdorff_distance
from utils.util import onehot2multi_mask, normalize, pad2factor, load_dicom_image, crop_boxes2mask_single, npy2submission
import pandas as pd
from evaluationScript.noduleCADEvaluationLUNA16 import noduleCADEvaluation
plt.rcParams['figure.figsize'] = (24, 16)
plt.switch_backend('agg')
this_module = sys.modules[__name__]
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
parser = argparse.ArgumentParser()
parser.add_argument('--net', '-m', metavar='NET', default=config['net'],
help='neural net')
parser.add_argument("mode", type=str,
help="you want to test or val")
parser.add_argument("--weight", type=str, default=config['initial_checkpoint'],
help="path to model weights to be used")
parser.add_argument("--dicom-path", type=str, default=None,
help="path to dicom files of patient")
parser.add_argument("--out-dir", type=str, default=config['out_dir'],
help="path to save the results")
parser.add_argument("--test-set-name", type=str, default=config['test_set_name'],
help="path to save the results")
def main():
logging.basicConfig(format='[%(levelname)s][%(asctime)s] %(message)s', level=logging.INFO)
args = parser.parse_args()
# params_eye_L = np.load('weights/params_eye_L.npy').item()
# params_eye_R = np.load('weights/params_eye_R.npy').item()
# params_brain_stem = np.load('weights/params_brain_stem.npy').item()
if args.mode == 'eval':
data_dir = config['preprocessed_data_dir']
test_set_name = args.test_set_name
num_workers = 0
initial_checkpoint = args.weight
net = args.net
out_dir = args.out_dir
net = getattr(this_module, net)(config)
net = net.cuda()
if initial_checkpoint:
print('[Loading model from %s]' % initial_checkpoint)
checkpoint = torch.load(initial_checkpoint)
# out_dir = checkpoint['out_dir']
epoch = checkpoint['epoch']
net.load_state_dict(checkpoint['state_dict'])
else:
print('No model weight file specified')
return
print('out_dir', out_dir)
save_dir = os.path.join(out_dir, 'res', str(epoch))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if not os.path.exists(os.path.join(save_dir, 'FROC')):
os.makedirs(os.path.join(save_dir, 'FROC'))
dataset = MaskReader(data_dir, test_set_name, config, mode='eval')
eval(net, dataset, save_dir)
else:
logging.error('Mode %s is not supported' % (args.mode))
def eval(net, dataset, save_dir=None):
net.set_mode('eval')
net.use_mask = False
net.use_rcnn = True
aps = []
dices = []
raw_dir = config['data_dir']
preprocessed_dir = config['preprocessed_data_dir']
print('Total # of eval data %d' % (len(dataset)))
for i, (input, truth_bboxes, truth_labels, truth_masks, mask, image) in enumerate(dataset):
try:
D, H, W = image.shape
pid = dataset.filenames[i]
print('[%d] Predicting %s' % (i, pid), image.shape)
gt_mask = mask.astype(np.uint8)
with torch.no_grad():
input = input.cuda().unsqueeze(0)
net.forward(input, truth_bboxes, truth_labels, truth_masks, mask)
rpns = net.rpn_proposals.cpu().numpy()
detections = net.detections.cpu().numpy()
ensembles = net.ensemble_proposals.cpu().numpy()
if len(detections) and net.use_mask:
crop_boxes = net.crop_boxes
segments = [F.sigmoid(m).cpu().numpy() > 0.5 for m in net.mask_probs]
pred_mask = crop_boxes2mask_single(crop_boxes[:, 1:], segments, input.shape[2:])
pred_mask = pred_mask.astype(np.uint8)
# compute average precisions
ap, dice = average_precision(gt_mask, pred_mask)
aps.append(ap)
dices.extend(dice.tolist())
print(ap)
print('AP: ', np.mean(ap))
print('DICE: ', dice)
print
else:
pred_mask = np.zeros((input[0].shape))
np.save(os.path.join(save_dir, '%s.npy' % (pid)), pred_mask)
print('rpn', rpns.shape)
print('detection', detections.shape)
print('ensemble', ensembles.shape)
if len(rpns):
rpns = rpns[:, 1:]
np.save(os.path.join(save_dir, '%s_rpns.npy' % (pid)), rpns)
if len(detections):
detections = detections[:, 1:-1]
np.save(os.path.join(save_dir, '%s_rcnns.npy' % (pid)), detections)
if len(ensembles):
ensembles = ensembles[:, 1:]
np.save(os.path.join(save_dir, '%s_ensembles.npy' % (pid)), ensembles)
# Clear gpu memory
del input, truth_bboxes, truth_labels, truth_masks, mask, image, pred_mask#, gt_mask, gt_img, pred_img, full, score
torch.cuda.empty_cache()
except Exception as e:
del input, truth_bboxes, truth_labels, truth_masks, mask, image,
torch.cuda.empty_cache()
traceback.print_exc()
print
return
aps = np.array(aps)
dices = np.array(dices)
print('mAP: ', np.mean(aps, 0))
print('mean dice:%.4f(%.4f)' % (np.mean(dices), np.std(dices)))
print('mean dice (exclude fn):%.4f(%.4f)' % (np.mean(dices[dices != 0]), np.std(dices[dices != 0])))
# Generate prediction csv for the use of performning FROC analysis
# Save both rpn and rcnn results
rpn_res = []
rcnn_res = []
ensemble_res = []
for pid in dataset.filenames:
if os.path.exists(os.path.join(save_dir, '%s_rpns.npy' % (pid))):
rpns = np.load(os.path.join(save_dir, '%s_rpns.npy' % (pid)))
rpns = rpns[:, [3, 2, 1, 4, 0]]
names = np.array([[pid]] * len(rpns))
rpn_res.append(np.concatenate([names, rpns], axis=1))
if os.path.exists(os.path.join(save_dir, '%s_rcnns.npy' % (pid))):
rcnns = np.load(os.path.join(save_dir, '%s_rcnns.npy' % (pid)))
rcnns = rcnns[:, [3, 2, 1, 4, 0]]
names = np.array([[pid]] * len(rcnns))
rcnn_res.append(np.concatenate([names, rcnns], axis=1))
if os.path.exists(os.path.join(save_dir, '%s_ensembles.npy' % (pid))):
ensembles = np.load(os.path.join(save_dir, '%s_ensembles.npy' % (pid)))
ensembles = ensembles[:, [3, 2, 1, 4, 0]]
names = np.array([[pid]] * len(ensembles))
ensemble_res.append(np.concatenate([names, ensembles], axis=1))
rpn_res = np.concatenate(rpn_res, axis=0)
rcnn_res = np.concatenate(rcnn_res, axis=0)
ensemble_res = np.concatenate(ensemble_res, axis=0)
col_names = ['seriesuid','coordX','coordY','coordZ','diameter_mm', 'probability']
eval_dir = os.path.join(save_dir, 'FROC')
rpn_submission_path = os.path.join(eval_dir, 'submission_rpn.csv')
rcnn_submission_path = os.path.join(eval_dir, 'submission_rcnn.csv')
ensemble_submission_path = os.path.join(eval_dir, 'submission_ensemble.csv')
df = pd.DataFrame(rpn_res, columns=col_names)
df.to_csv(rpn_submission_path, index=False)
df = pd.DataFrame(rcnn_res, columns=col_names)
df.to_csv(rcnn_submission_path, index=False)
df = pd.DataFrame(ensemble_res, columns=col_names)
df.to_csv(ensemble_submission_path, index=False)
# Start evaluating
if not os.path.exists(os.path.join(eval_dir, 'rpn')):
os.makedirs(os.path.join(eval_dir, 'rpn'))
if not os.path.exists(os.path.join(eval_dir, 'rcnn')):
os.makedirs(os.path.join(eval_dir, 'rcnn'))
if not os.path.exists(os.path.join(eval_dir, 'ensemble')):
os.makedirs(os.path.join(eval_dir, 'ensemble'))
noduleCADEvaluation('evaluationScript/annotations/LIDC/3_annotation.csv',
'evaluationScript/annotations/LIDC/3_annotation_excluded.csv',
dataset.set_name, rpn_submission_path, os.path.join(eval_dir, 'rpn'))
noduleCADEvaluation('evaluationScript/annotations/LIDC/3_annotation.csv',
'evaluationScript/annotations/LIDC/3_annotation_excluded.csv',
dataset.set_name, rcnn_submission_path, os.path.join(eval_dir, 'rcnn'))
noduleCADEvaluation('evaluationScript/annotations/LIDC/3_annotation.csv',
'evaluationScript/annotations/LIDC/3_annotation_excluded.csv',
dataset.set_name, ensemble_submission_path, os.path.join(eval_dir, 'ensemble'))
print
def eval_single(net, input):
with torch.no_grad():
input = input.cuda().unsqueeze(0)
logits = net.forward(input)
logits = logits[0]
masks = logits.cpu().data.numpy()
masks = (masks > 0.5).astype(np.int32)
return masks
if __name__ == '__main__':
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。