代码拉取完成,页面将自动刷新
# Copyright Niantic 2019. Patent Pending. All rights reserved.
#
# This software is licensed under the terms of the Monodepth2 licence
# which allows for non-commercial use only, the full terms of which are made
# available in the LICENSE file.
from __future__ import absolute_import, division, print_function
import os
import sys
import glob
import argparse
import numpy as np
import PIL.Image as pil
import matplotlib as mpl
import matplotlib.cm as cm
import torch
from torchvision import transforms, datasets
import networks
from layers import disp_to_depth
from utils import download_model_if_doesnt_exist
def parse_args():
parser = argparse.ArgumentParser(
description='Simple testing funtion for Monodepthv2 models.')
parser.add_argument('--image_path', type=str,
help='path to a test image or folder of images', required=True)
parser.add_argument('--model_name', type=str,
help='name of a pretrained model to use',
choices=[
"mono_640x192",
"stereo_640x192",
"mono+stereo_640x192",
"mono_no_pt_640x192",
"stereo_no_pt_640x192",
"mono+stereo_no_pt_640x192",
"mono_1024x320",
"stereo_1024x320",
"mono+stereo_1024x320"])
parser.add_argument('--ext', type=str,
help='image extension to search for in folder', default="jpg")
parser.add_argument("--no_cuda",
help='if set, disables CUDA',
action='store_true')
return parser.parse_args()
def test_simple(args):
"""Function to predict for a single image or folder of images
"""
assert args.model_name is not None, \
"You must specify the --model_name parameter; see README.md for an example"
if torch.cuda.is_available() and not args.no_cuda:
device = torch.device("cuda")
else:
device = torch.device("cpu")
download_model_if_doesnt_exist(args.model_name)
model_path = os.path.join("models", args.model_name)
print("-> Loading model from ", model_path)
encoder_path = os.path.join(model_path, "encoder.pth")
depth_decoder_path = os.path.join(model_path, "depth.pth")
# LOADING PRETRAINED MODEL
print(" Loading pretrained encoder")
encoder = networks.ResnetEncoder(18, False)
loaded_dict_enc = torch.load(encoder_path, map_location=device)
# extract the height and width of image that this model was trained with
feed_height = loaded_dict_enc['height']
feed_width = loaded_dict_enc['width']
filtered_dict_enc = {k: v for k, v in loaded_dict_enc.items() if k in encoder.state_dict()}
encoder.load_state_dict(filtered_dict_enc)
encoder.to(device)
encoder.eval()
print(" Loading pretrained decoder")
depth_decoder = networks.DepthDecoder(
num_ch_enc=encoder.num_ch_enc, scales=range(4))
loaded_dict = torch.load(depth_decoder_path, map_location=device)
depth_decoder.load_state_dict(loaded_dict)
depth_decoder.to(device)
depth_decoder.eval()
# FINDING INPUT IMAGES
if os.path.isfile(args.image_path):
# Only testing on a single image
paths = [args.image_path]
output_directory = os.path.dirname(args.image_path)
elif os.path.isdir(args.image_path):
# Searching folder for images
paths = glob.glob(os.path.join(args.image_path, '*.{}'.format(args.ext)))
output_directory = args.image_path
else:
raise Exception("Can not find args.image_path: {}".format(args.image_path))
print("-> Predicting on {:d} test images".format(len(paths)))
# PREDICTING ON EACH IMAGE IN TURN
with torch.no_grad():
for idx, image_path in enumerate(paths):
if image_path.endswith("_disp.jpg"):
# don't try to predict disparity for a disparity image!
continue
# Load image and preprocess
input_image = pil.open(image_path).convert('RGB')
original_width, original_height = input_image.size
input_image = input_image.resize((feed_width, feed_height), pil.LANCZOS)
input_image = transforms.ToTensor()(input_image).unsqueeze(0)
# PREDICTION
input_image = input_image.to(device)
features = encoder(input_image)
outputs = depth_decoder(features)
disp = outputs[("disp", 0)]
disp_resized = torch.nn.functional.interpolate(
disp, (original_height, original_width), mode="bilinear", align_corners=False)
# Saving numpy file
output_name = os.path.splitext(os.path.basename(image_path))[0]
name_dest_npy = os.path.join(output_directory, "{}_disp.npy".format(output_name))
scaled_disp, _ = disp_to_depth(disp, 0.1, 100)
np.save(name_dest_npy, scaled_disp.cpu().numpy())
# Saving colormapped depth image
disp_resized_np = disp_resized.squeeze().cpu().numpy()
vmax = np.percentile(disp_resized_np, 95)
normalizer = mpl.colors.Normalize(vmin=disp_resized_np.min(), vmax=vmax)
mapper = cm.ScalarMappable(norm=normalizer, cmap='magma')
colormapped_im = (mapper.to_rgba(disp_resized_np)[:, :, :3] * 255).astype(np.uint8)
im = pil.fromarray(colormapped_im)
name_dest_im = os.path.join(output_directory, "{}_disp.jpeg".format(output_name))
im.save(name_dest_im)
print(" Processed {:d} of {:d} images - saved prediction to {}".format(
idx + 1, len(paths), name_dest_im))
print('-> Done!')
if __name__ == '__main__':
args = parse_args()
test_simple(args)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。