1 Star 0 Fork 0

lzp/MedicalGPT

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
inference_multigpu_demo.py 7.83 KB
一键复制 编辑 原始数据 按行查看 历史
shibing624 提交于 2023-11-15 14:48 . update infer use greedy decoding.
# -*- coding: utf-8 -*-
"""
@author:XuMing(xuming624@qq.com)
@description: use torchrun to inference with multi-gpus
usage:
CUDA_VISIBLE_DEVICES=0,1 torchrun --nproc_per_node 2 inference_multigpu_demo.py --model_type bloom --base_model bigscience/bloom-560m
"""
import argparse
import json
import os
import torch
import torch.distributed as dist
from loguru import logger
from peft import PeftModel
from torch.nn import DataParallel
from torch.utils.data import DataLoader, Dataset, DistributedSampler
from tqdm import tqdm
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoTokenizer,
BloomForCausalLM,
BloomTokenizerFast,
LlamaTokenizer,
LlamaForCausalLM,
GenerationConfig,
)
from supervised_finetuning import get_conv_template
MODEL_CLASSES = {
"bloom": (BloomForCausalLM, BloomTokenizerFast),
"chatglm": (AutoModel, AutoTokenizer),
"llama": (LlamaForCausalLM, LlamaTokenizer),
"baichuan": (AutoModelForCausalLM, AutoTokenizer),
"auto": (AutoModelForCausalLM, AutoTokenizer),
}
class TextDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_type', default=None, type=str, required=True)
parser.add_argument('--base_model', default=None, type=str, required=True)
parser.add_argument('--lora_model', default="", type=str, help="If None, perform inference on the base model")
parser.add_argument('--tokenizer_path', default=None, type=str)
parser.add_argument('--template_name', default="vicuna", type=str,
help="Prompt template name, eg: alpaca, vicuna, baichuan, chatglm2 etc.")
parser.add_argument("--repetition_penalty", type=float, default=1.0)
parser.add_argument("--max_new_tokens", type=int, default=128)
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument('--data_file', default=None, type=str, help="Predict file, one example per line")
parser.add_argument('--output_file', default='./predictions_result.jsonl', type=str)
parser.add_argument('--resize_emb', action='store_true', help='Whether to resize model token embeddings')
args = parser.parse_args()
logger.info(args)
world_size = int(os.environ.get("WORLD_SIZE", "1"))
local_rank = int(os.environ.get("LOCAL_RANK", "0"))
logger.info(f"local_rank: {local_rank}, world_size: {world_size}")
torch.cuda.set_device(local_rank)
dist.init_process_group(backend='nccl')
if not torch.cuda.is_available():
raise ValueError("No GPU available, this script is only for GPU inference.")
if args.tokenizer_path is None:
args.tokenizer_path = args.base_model
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_path, trust_remote_code=True, padding_side='left')
load_type = torch.float16
base_model = model_class.from_pretrained(
args.base_model,
load_in_8bit=False,
torch_dtype=load_type,
low_cpu_mem_usage=True,
device_map={"": local_rank},
trust_remote_code=True,
)
try:
base_model.generation_config = GenerationConfig.from_pretrained(args.base_model, trust_remote_code=True)
except OSError:
logger.info("Failed to load generation config, use default.")
if args.resize_emb:
model_vocab_size = base_model.get_input_embeddings().weight.size(0)
tokenzier_vocab_size = len(tokenizer)
logger.info(f"Vocab of the base model: {model_vocab_size}")
logger.info(f"Vocab of the tokenizer: {tokenzier_vocab_size}")
if model_vocab_size != tokenzier_vocab_size:
logger.info("Resize model embeddings to fit tokenizer")
base_model.resize_token_embeddings(tokenzier_vocab_size)
if args.lora_model:
model = PeftModel.from_pretrained(base_model, args.lora_model, torch_dtype=load_type,
device_map={"": local_rank})
logger.info("Loaded lora model")
else:
model = base_model
model.eval()
# Use multi-GPU inference
model = DataParallel(model)
model = model.module
logger.info(tokenizer)
# test data
if args.data_file is None:
examples = [
"介绍下北京",
"乙肝和丙肝的区别?",
"失眠怎么办?",
'用一句话描述地球为什么是独一无二的。',
"Tell me about alpacas.",
"Tell me about the president of Mexico in 2019.",
"hello.",
]
else:
with open(args.data_file, 'r', encoding='utf-8') as f:
examples = [l.strip() for l in f.readlines()]
logger.info(f"first 10 examples: {examples[:10]}")
prompt_template = get_conv_template(args.template_name)
write_batch_size = args.batch_size * world_size * 10
generation_kwargs = dict(
max_new_tokens=args.max_new_tokens,
do_sample=False,
num_beams=1,
repetition_penalty=args.repetition_penalty,
)
stop_str = tokenizer.eos_token if tokenizer.eos_token else prompt_template.stop_str
if local_rank <= 0 and os.path.exists(args.output_file):
os.remove(args.output_file)
count = 0
for batch in tqdm(
[
examples[i: i + write_batch_size]
for i in range(0, len(examples), write_batch_size)
],
desc="Generating outputs",
):
dataset = TextDataset(batch)
sampler = DistributedSampler(dataset, num_replicas=world_size, rank=local_rank, shuffle=False)
data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=sampler)
responses = []
inputs = []
for texts in data_loader:
inputs.extend(texts)
prompted_texts = [prompt_template.get_prompt(messages=[[s, '']]) for s in texts]
logger.debug(f'local_rank: {local_rank}, inputs size:{len(prompted_texts)}, top3: {prompted_texts[:3]}')
inputs_tokens = tokenizer(prompted_texts, return_tensors="pt", padding=True)
input_ids = inputs_tokens['input_ids'].to(local_rank)
outputs = model.generate(input_ids=input_ids, **generation_kwargs)
prompt_len = len(input_ids[0])
outputs = [i[prompt_len:] for i in outputs]
generated_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
logger.debug(
f'local_rank: {local_rank}, outputs size:{len(generated_outputs)}, top3: {generated_outputs[:3]}'
)
responses.extend(generated_outputs)
all_inputs = [None] * world_size
all_responses = [None] * world_size
dist.all_gather_object(all_inputs, inputs)
dist.all_gather_object(all_responses, responses)
# Write responses only on the main process
if local_rank <= 0:
all_inputs_flat = [inp for process_inputs in all_inputs for inp in process_inputs]
all_responses_flat = [response for process_responses in all_responses for response in process_responses]
logger.debug(f"all_responses size:{len(all_responses_flat)}, top5: {all_responses_flat[:5]}")
results = []
for example, response in zip(all_inputs_flat, all_responses_flat):
results.append({"Input": example, "Output": response})
with open(args.output_file, 'a', encoding='utf-8') as f:
for entry in results:
json.dump(entry, f, ensure_ascii=False)
f.write('\n')
count += 1
if local_rank <= 0:
logger.info(f'save to {args.output_file}, total count: {count}')
dist.barrier()
dist.destroy_process_group()
if __name__ == '__main__':
main()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/liuliu2017liuliu/MedicalGPT.git
git@gitee.com:liuliu2017liuliu/MedicalGPT.git
liuliu2017liuliu
MedicalGPT
MedicalGPT
main

搜索帮助