代码拉取完成,页面将自动刷新
from __future__ import print_function
import argparse
import pickle
import time
import numpy as np
import os
import torch
import torch.backends.cudnn as cudnn
import torch.nn.init as init
import torch.optim as optim
import torch.utils.data as data
from torch.autograd import Variable
from data import VOCroot, COCOroot, VOC_300, VOC_512, COCO_300, COCO_512, COCO_mobile_300, AnnotationTransform, \
COCODetection, VOCDetection, detection_collate, BaseTransform, preproc
from layers.functions import Detect, PriorBox
from layers.modules import MultiBoxLoss
from utils.nms_wrapper import nms
from utils.timer import Timer
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
parser = argparse.ArgumentParser(
description='Receptive Field Block Net Training')
parser.add_argument('-v', '--version', default='SSD_vgg',
help='RFB_vgg ,RFB_E_vgg RFB_mobile SSD_vgg version.')
parser.add_argument('-s', '--size', default='512',
help='300 or 512 input size.')
parser.add_argument('-d', '--dataset', default='COCO',
help='VOC or COCO dataset')
parser.add_argument(
'--basenet', default='weights/vgg16_reducedfc.pth', help='pretrained base model')
parser.add_argument('--jaccard_threshold', default=0.5,
type=float, help='Min Jaccard index for matching')
parser.add_argument('-b', '--batch_size', default=8,
type=int, help='Batch size for training')
parser.add_argument('--num_workers', default=4,
type=int, help='Number of workers used in dataloading')
parser.add_argument('--cuda', default=True,
type=bool, help='Use cuda to train model')
parser.add_argument('--ngpu', default=2, type=int, help='gpus')
parser.add_argument('--lr', '--learning-rate',
default=4e-3, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--resume_net', default=False, help='resume net for retraining')
parser.add_argument('--resume_epoch', default=0,
type=int, help='resume iter for retraining')
parser.add_argument('-max', '--max_epoch', default=300,
type=int, help='max epoch for retraining')
parser.add_argument('--weight_decay', default=5e-4,
type=float, help='Weight decay for SGD')
parser.add_argument('-we', '--warm_epoch', default=1,
type=int, help='max epoch for retraining')
parser.add_argument('--gamma', default=0.1,
type=float, help='Gamma update for SGD')
parser.add_argument('--log_iters', default=True,
type=bool, help='Print the loss at each iteration')
parser.add_argument('--save_folder', default='weights/',
help='Location to save checkpoint models')
parser.add_argument('--date', default='1213')
parser.add_argument('--save_frequency', default=10)
parser.add_argument('--test',default=None, help='test pretrained model')
parser.add_argument('--retest', default=False, type=bool,
help='test cache results')
parser.add_argument('--test_frequency', default=10)
parser.add_argument('--visdom', default=False, type=str2bool, help='Use visdom to for loss visualization')
parser.add_argument('--send_images_to_visdom', type=str2bool, default=False,
help='Sample a random image from each 10th batch, send it to visdom after augmentations step')
args = parser.parse_args()
save_folder = os.path.join(args.save_folder, args.version + '_' + args.size, args.date)
if not os.path.exists(save_folder):
os.makedirs(save_folder)
test_save_dir = os.path.join(save_folder, 'ss_predict')
if not os.path.exists(test_save_dir):
os.makedirs(test_save_dir)
log_file_path = save_folder + '/train' + time.strftime('_%Y-%m-%d-%H-%M', time.localtime(time.time())) + '.log'
if args.dataset == 'VOC':
train_sets = [('2007', 'trainval'), ('2012', 'trainval')]
cfg = (VOC_300, VOC_512)[args.size == '512']
else:
train_sets = [('2017', 'train')]
cfg = (COCO_300, COCO_512)[args.size == '512']
if args.version == 'RFB_vgg':
from models.RFB_Net_vgg import build_net
elif args.version == 'RFB_E_vgg':
from models.RFB_Net_E_vgg import build_net
elif args.version == 'RFB_mobile':
from models.RFB_Net_mobile import build_net
cfg = COCO_mobile_300
elif args.version == 'SSD_vgg':
from models.SSD_vgg import build_net
elif args.version == 'FSSD_vgg':
from models.FSSD_vgg import build_net
elif args.version == 'FRFBSSD_vgg':
from models.FRFBSSD_vgg import build_net
elif args.version == 'SSD_HarDNet68':
from models.SSD_HarDNet68 import build_net
elif args.version == 'SSD_HarDNet85':
from models.SSD_HarDNet85 import build_net
elif args.version == 'RFB_HarDNet68':
from models.RFB_HarDNet68 import build_net
elif args.version == 'RFB_HarDNet85':
from models.RFB_HarDNet85 import build_net
else:
print('Unkown version!')
rgb_std = (1, 1, 1)
rgb_means = (104, 117, 123)
img_dim = (300, 512)[args.size == '512']
if 'vgg' in args.version:
rgb_means = (104, 117, 123)
elif 'mobile' in args.version:
rgb_means = (103.94, 116.78, 123.68)
p = (0.6, 0.2)[args.version == 'RFB_mobile']
num_classes = (21, 81)[args.dataset == 'COCO']
batch_size = args.batch_size
weight_decay = 0.0005
gamma = 0.1
momentum = 0.9
if args.visdom:
import visdom
viz = visdom.Visdom()
net = build_net(img_dim, num_classes)
print(net)
if not args.resume_net and args.test is None:
base_weights = torch.load(args.basenet)
print('Loading base network...')
net.base.load_state_dict(base_weights)
def xavier(param):
init.xavier_uniform(param)
def weights_init(m):
for key in m.state_dict():
if key.split('.')[-1] == 'weight':
if 'conv' in key:
init.kaiming_normal(m.state_dict()[key], mode='fan_out')
if 'bn' in key:
m.state_dict()[key][...] = 1
elif key.split('.')[-1] == 'bias':
m.state_dict()[key][...] = 0
print('Initializing weights...')
# initialize newly added layers' weights with kaiming_normal method
net.extras.apply(weights_init)
net.loc.apply(weights_init)
net.conf.apply(weights_init)
if args.version == 'FSSD_vgg' or args.version == 'FRFBSSD_vgg':
net.ft_module.apply(weights_init)
net.pyramid_ext.apply(weights_init)
if 'RFB' in args.version:
net.Norm.apply(weights_init)
if args.version == 'RFB_E_vgg':
net.reduce.apply(weights_init)
net.up_reduce.apply(weights_init)
if hasattr(net, 'bridge'):
net.bridge.apply(weights_init)
else:
# load resume network
resume_net_path = os.path.join(save_folder, args.version + '_' + args.dataset + '_epoches_' + \
str(args.resume_epoch) + '.pth')
if args.test is not None:
print('Loading pretrained model for testing:', args.test)
state_dict = torch.load(args.test)
else:
print('Loading resume network', resume_net_path)
state_dict = torch.load(resume_net_path)
# create new OrderedDict that does not contain `module.`
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
head = k[:7]
if head == 'module.':
name = k[7:] # remove `module.`
else:
name = k
new_state_dict[name] = v
net.load_state_dict(new_state_dict)
if args.ngpu > 0:
net = torch.nn.DataParallel(net, device_ids=list(range(args.ngpu)))
if args.cuda:
net.cuda()
cudnn.benchmark = True
detector = Detect(num_classes, 0, cfg)
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=args.momentum, weight_decay=args.weight_decay)
# optimizer = optim.RMSprop(net.parameters(), lr=args.lr,alpha = 0.9, eps=1e-08,
# momentum=args.momentum, weight_decay=args.weight_decay)
criterion = MultiBoxLoss(num_classes, 0.5, True, 0, True, 3, 0.5, False)
priorbox = PriorBox(cfg)
priors = Variable(priorbox.forward(), volatile=True)
# dataset
print('Loading Dataset...')
if args.dataset == 'VOC':
testset = VOCDetection(
VOCroot, [('2007', 'test')], None, AnnotationTransform())
train_dataset = VOCDetection(VOCroot, train_sets, preproc(
img_dim, rgb_means, rgb_std, p), AnnotationTransform())
elif args.dataset == 'COCO':
testset = COCODetection(
COCOroot, [('2017', 'val')], None)
train_dataset = COCODetection(COCOroot, train_sets, preproc(
img_dim, rgb_means, rgb_std, p))
else:
print('Only VOC and COCO are supported now!')
exit()
def test():
torch.backends.cudnn.benchmark = True
net.eval()
top_k = (300, 200)[args.dataset == 'COCO']
if args.dataset == 'VOC':
APs, mAP = test_net(test_save_dir, net, detector, args.cuda, testset,
BaseTransform(net.module.size, rgb_means, rgb_std, (2, 0, 1)),
top_k, thresh=0.03)
APs = [str(num) for num in APs]
mAP = str(mAP)
print('mAP:\n' + mAP + '\n')
else:
test_net(test_save_dir, net, detector, args.cuda, testset,
BaseTransform(net.module.size, rgb_means, rgb_std, (2, 0, 1)),
top_k, thresh=0.02)
def train():
net.train()
# loss counters
epoch = 0
if args.resume_net:
epoch = 0 + args.resume_epoch
epoch_size = len(train_dataset) // args.batch_size
max_iter = args.max_epoch * epoch_size
stepvalues_VOC = (150 * epoch_size, 200 * epoch_size, 250 * epoch_size)
stepvalues_COCO = (90 * epoch_size, 120 * epoch_size, 140 * epoch_size)
stepvalues = (stepvalues_VOC, stepvalues_COCO)[args.dataset == 'COCO']
print('Training', args.version, 'on', train_dataset.name)
step_index = 0
if args.visdom:
# initialize visdom loss plot
lot = viz.line(
X=torch.zeros((1,)).cpu(),
Y=torch.zeros((1, 3)).cpu(),
opts=dict(
xlabel='Iteration',
ylabel='Loss',
title='Current SSD Training Loss',
legend=['Loc Loss', 'Conf Loss', 'Loss']
)
)
epoch_lot = viz.line(
X=torch.zeros((1,)).cpu(),
Y=torch.zeros((1, 3)).cpu(),
opts=dict(
xlabel='Epoch',
ylabel='Loss',
title='Epoch SSD Training Loss',
legend=['Loc Loss', 'Conf Loss', 'Loss']
)
)
if args.resume_epoch > 0:
start_iter = args.resume_epoch * epoch_size
else:
start_iter = 0
log_file = open(log_file_path, 'w')
batch_iterator = None
mean_loss_c = 0
mean_loss_l = 0
for iteration in range(start_iter, max_iter + 10):
if (iteration % epoch_size == 0):
# create batch iterator
batch_iterator = iter(data.DataLoader(train_dataset, batch_size,
shuffle=True, num_workers=args.num_workers,
collate_fn=detection_collate))
loc_loss = 0
conf_loss = 0
if epoch % args.save_frequency == 0 and epoch > 0:
torch.save(net.state_dict(), os.path.join(save_folder, args.version + '_' + args.dataset + '_epoches_' +
repr(epoch) + '.pth'))
if epoch % args.test_frequency == 0 and epoch > 0:
net.eval()
top_k = (300, 200)[args.dataset == 'COCO']
if args.dataset == 'VOC':
APs, mAP = test_net(test_save_dir, net, detector, args.cuda, testset,
BaseTransform(net.module.size, rgb_means, rgb_std, (2, 0, 1)),
top_k, thresh=0.01)
APs = [str(num) for num in APs]
mAP = str(mAP)
log_file.write(str(iteration) + ' APs:\n' + '\n'.join(APs))
log_file.write('mAP:\n' + mAP + '\n')
else:
test_net(test_save_dir, net, detector, args.cuda, testset,
BaseTransform(net.module.size, rgb_means, rgb_std, (2, 0, 1)),
top_k, thresh=0.01)
net.train()
epoch += 1
load_t0 = time.time()
if iteration in stepvalues:
step_index = stepvalues.index(iteration) + 1
if args.visdom:
viz.line(
X=torch.ones((1, 3)).cpu() * epoch,
Y=torch.Tensor([mean_loss_l, mean_loss_c,
mean_loss_l + mean_loss_c]).unsqueeze(0).cpu() / epoch_size,
win=epoch_lot,
update='append'
)
lr = adjust_learning_rate(optimizer, args.gamma, epoch, step_index, iteration, epoch_size)
# load train data
images, targets = next(batch_iterator)
# print(np.sum([torch.sum(anno[:,-1] == 2) for anno in targets]))
if args.cuda:
images = Variable(images.cuda())
targets = [Variable(anno.cuda(), volatile=True) for anno in targets]
else:
images = Variable(images)
targets = [Variable(anno, volatile=True) for anno in targets]
# forward
out = net(images)
# backprop
optimizer.zero_grad()
# arm branch loss
loss_l, loss_c = criterion(out, priors, targets)
# odm branch loss
mean_loss_c += loss_c.data
mean_loss_l += loss_l.data
loss = loss_l + loss_c
loss.backward()
optimizer.step()
load_t1 = time.time()
if iteration % 10 == 0:
print('Epoch:' + repr(epoch) + ' || epochiter: ' + repr(iteration % epoch_size) + '/' + repr(epoch_size)
+ '|| Totel iter ' +
repr(iteration) + ' || L: %.4f C: %.4f||' % (
mean_loss_l / 10, mean_loss_c / 10) +
'Batch time: %.4f sec. ||' % (load_t1 - load_t0) + 'LR: %.8f' % (lr))
log_file.write(
'Epoch:' + repr(epoch) + ' || epochiter: ' + repr(iteration % epoch_size) + '/' + repr(epoch_size)
+ '|| Totel iter ' +
repr(iteration) + ' || L: %.4f C: %.4f||' % (
mean_loss_l / 10, mean_loss_c / 10) +
'Batch time: %.4f sec. ||' % (load_t1 - load_t0) + 'LR: %.8f' % (lr) + '\n')
mean_loss_c = 0
mean_loss_l = 0
if args.visdom and args.send_images_to_visdom:
random_batch_index = np.random.randint(images.size(0))
viz.image(images.data[random_batch_index].cpu().numpy())
log_file.close()
torch.save(net.state_dict(), os.path.join(save_folder,
'Final_' + args.version + '_' + args.dataset + '.pth'))
def adjust_learning_rate(optimizer, gamma, epoch, step_index, iteration, epoch_size):
"""Sets the learning rate
# Adapted from PyTorch Imagenet example:
# https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
if epoch < args.warm_epoch:
lr = 1e-6 + (args.lr - 1e-6) * iteration / (epoch_size * args.warm_epoch)
else:
lr = args.lr * (gamma ** (step_index))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def test_net(save_folder, net, detector, cuda, testset, transform, max_per_image=300, thresh=0.005):
if not os.path.exists(save_folder):
os.mkdir(save_folder)
# dump predictions and assoc. ground truth to text file for now
num_images = len(testset)
num_classes = (21, 81)[args.dataset == 'COCO']
all_boxes = [[[] for _ in range(num_images)]
for _ in range(num_classes)]
_t = {'im_detect': Timer(), 'misc': Timer()}
det_file = os.path.join(save_folder, 'detections.pkl')
if args.retest:
f = open(det_file, 'rb')
all_boxes = pickle.load(f)
print('Evaluating detections')
testset.evaluate_detections(all_boxes, save_folder)
return
for i in range(num_images):
img = testset.pull_image(i)
x = Variable(transform(img).unsqueeze(0), volatile=True)
if cuda:
x = x.cuda()
torch.cuda.synchronize()
_t['im_detect'].tic()
out = net(x=x, test=True) # forward pass
boxes, scores = detector.forward(out, priors)
torch.cuda.synchronize()
detect_time = _t['im_detect'].toc()
boxes = boxes[0]
scores = scores[0]
boxes = boxes.cpu().numpy()
scores = scores.cpu().numpy()
# scale each detection back up to the image
scale = torch.Tensor([img.shape[1], img.shape[0],
img.shape[1], img.shape[0]]).cpu().numpy()
boxes *= scale
_t['misc'].tic()
for j in range(1, num_classes):
inds = np.where(scores[:, j] > thresh)[0]
if len(inds) == 0:
all_boxes[j][i] = np.empty([0, 5], dtype=np.float32)
continue
c_bboxes = boxes[inds]
c_scores = scores[inds, j]
c_dets = np.hstack((c_bboxes, c_scores[:, np.newaxis])).astype(
np.float32, copy=False)
if args.dataset == 'VOC':
cpu = False
else:
cpu = False
keep = nms(c_dets, 0.45, force_cpu=cpu)
keep = keep[:50]
c_dets = c_dets[keep, :]
all_boxes[j][i] = c_dets
if max_per_image > 0:
image_scores = np.hstack([all_boxes[j][i][:, -1] for j in range(1, num_classes)])
if len(image_scores) > max_per_image:
image_thresh = np.sort(image_scores)[-max_per_image]
for j in range(1, num_classes):
keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0]
all_boxes[j][i] = all_boxes[j][i][keep, :]
nms_time = _t['misc'].toc()
if i % 20 == 0:
print('im_detect: {:d}/{:d} Detection: {:.2f}ms, NMS: {:.2f}ms'
.format(i + 1, num_images, detect_time*1000.0, nms_time*1000.0))
_t['im_detect'].clear()
_t['misc'].clear()
with open(det_file, 'wb') as f:
pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL)
print('Evaluating detections')
if args.dataset == 'VOC':
APs, mAP = testset.evaluate_detections(all_boxes, save_folder)
return APs, mAP
else:
testset.evaluate_detections(all_boxes, save_folder)
if __name__ == '__main__':
if args.test is not None:
test()
else:
train()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。