1 Star 0 Fork 0

linkchainiii/PytorchSSD

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
refinedet_train_test.py 17.23 KB
一键复制 编辑 原始数据 按行查看 历史
lzx1413 提交于 2018-04-06 10:13 . fix some typos
from __future__ import print_function
import sys
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import torch.nn.init as init
import argparse
import numpy as np
from torch.autograd import Variable
import torch.utils.data as data
from data import VOCroot, COCOroot,VOC_320, AnnotationTransform, COCODetection, VOCDetection, detection_collate, BaseTransform, preproc,VOC_512
#from layers.modules import MultiBoxLoss
from layers.modules import RefineMultiBoxLoss
from layers.functions import Detect,PriorBox
import time
from utils.nms_wrapper import nms
from utils.timer import Timer
import pickle
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
parser = argparse.ArgumentParser(
description='Receptive Field Block Net Training')
parser.add_argument('-v', '--version', default='Refine_vgg',
help='Refine_vgg')
parser.add_argument('-s', '--size', default='320',
help='320 or 512 input size.')
parser.add_argument('-d', '--dataset', default='VOC',
help='VOC or COCO dataset')
parser.add_argument(
'--basenet', default='/mnt/lvmhdd1/zuoxin/ssd_pytorch_models/vgg16_reducedfc.pth', help='pretrained base model')
#parser.add_argument(
# '--basenet', default='/mnt/lvmhdd1/zuoxin/ssd_pytorch_models/mb.pth', help='pretrained base model')
parser.add_argument('--jaccard_threshold', default=0.5,
type=float, help='Min Jaccard index for matching')
parser.add_argument('-b', '--batch_size', default=32,
type=int, help='Batch size for training')
parser.add_argument('--num_workers', default=8,
type=int, help='Number of workers used in dataloading')
parser.add_argument('--cuda', default=True,
type=bool, help='Use cuda to train model')
parser.add_argument('--gpu_id', default=[0,1], type=int, help='gpus')
parser.add_argument('--lr', '--learning-rate',
default=1e-3, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--resume_net', default=False, help='resume net for retraining')
parser.add_argument('--resume_epoch', default=0,
type=int, help='resume iter for retraining')
parser.add_argument('-max','--max_epoch', default=300,
type=int, help='max epoch for retraining')
parser.add_argument('-we','--warm_epoch', default=1,
type=int, help='max epoch for retraining')
parser.add_argument('--weight_decay', default=5e-4,
type=float, help='Weight decay for SGD')
parser.add_argument('--gamma', default=0.1,
type=float, help='Gamma update for SGD')
parser.add_argument('--log_iters', default=True,
type=bool, help='Print the loss at each iteration')
parser.add_argument('--save_folder', default='/mnt/lvmhdd1/zuoxin/ssd_pytorch_models/refine/',
help='Location to save checkpoint models')
parser.add_argument('--date',default='0327')
parser.add_argument('--save_frequency',default=10)
parser.add_argument('--retest', default=False, type=bool,
help='test cache results')
parser.add_argument('--test_frequency',default=10)
parser.add_argument('--visdom', default=False, type=str2bool, help='Use visdom to for loss visualization')
parser.add_argument('--send_images_to_visdom', type=str2bool, default=False, help='Sample a random image from each 10th batch, send it to visdom after augmentations step')
args = parser.parse_args()
save_folder = os.path.join(args.save_folder,args.version+'_'+args.size,args.date)
if not os.path.exists(save_folder):
os.makedirs(save_folder)
test_save_dir = os.path.join(save_folder,'ss_predict')
if not os.path.exists(test_save_dir):
os.makedirs(test_save_dir)
log_file_path = save_folder + '/train' + time.strftime('_%Y-%m-%d-%H-%M', time.localtime(time.time())) + '.log'
if args.dataset == 'VOC':
train_sets = [('2007', 'trainval'), ('2012', 'trainval')]
cfg = (VOC_320, VOC_512)[args.size == '512']
else:
train_sets = [('2014', 'train'),('2014', 'valminusminival')]
cfg = (VOC_320, VOC_512)[args.size == '512']
img_dim = (320,512)[args.size=='512']
rgb_std = (1,1,1)
if 'vgg' in args.version:
rgb_means = (104, 117, 123)
p = (0.6,0.2)[args.version == 'RFB_mobile']
num_classes = (21, 81)[args.dataset == 'COCO']
batch_size = args.batch_size
weight_decay = 0.0005
gamma = 0.1
momentum = 0.9
if args.visdom:
import visdom
viz = visdom.Visdom()
from models.RefineSSD_vgg import build_net
cfg = VOC_320
net = build_net(320, num_classes,use_refine=True)
print(net)
if not args.resume_net:
base_weights = torch.load(args.basenet)
print('Loading base network...')
net.base.load_state_dict(base_weights)
def xavier(param):
init.xavier_uniform(param)
def weights_init(m):
for key in m.state_dict():
if key.split('.')[-1] == 'weight':
if 'conv' in key:
init.kaiming_normal(m.state_dict()[key], mode='fan_out')
if 'bn' in key:
m.state_dict()[key][...] = 1
elif key.split('.')[-1] == 'bias':
m.state_dict()[key][...] = 0
print('Initializing weights...')
# initialize newly added layers' weights with kaiming_normal method
net.extras.apply(weights_init)
net.trans_layers.apply(weights_init)
net.latent_layrs.apply(weights_init)
net.up_layers.apply(weights_init)
net.arm_loc.apply(weights_init)
net.arm_conf.apply(weights_init)
net.odm_loc.apply(weights_init)
net.odm_conf.apply(weights_init)
else:
# load resume network
resume_net_path = os.path.join(save_folder,args.version+'_'+args.dataset + '_epoches_'+ \
str(args.resume_epoch) + '.pth')
print('Loading resume network',resume_net_path)
state_dict = torch.load(resume_net_path)
# create new OrderedDict that does not contain `module.`
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
head = k[:7]
if head == 'module.':
name = k[7:] # remove `module.`
else:
name = k
new_state_dict[name] = v
net.load_state_dict(new_state_dict)
if args.gpu_id:
net = torch.nn.DataParallel(net, device_ids=args.gpu_id)
if args.cuda:
net.cuda()
cudnn.benchmark = True
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=args.momentum, weight_decay=args.weight_decay)
#optimizer = optim.RMSprop(net.parameters(), lr=args.lr,alpha = 0.9, eps=1e-08,
# momentum=args.momentum, weight_decay=args.weight_decay)
arm_criterion = RefineMultiBoxLoss(2, 0.5, True, 0, True, 3, 0.5, False)
odm_criterion = RefineMultiBoxLoss(num_classes, 0.5, True, 0, True, 3, 0.5, False,0.01)
priorbox = PriorBox(cfg)
detector = Detect(num_classes,0,cfg,object_score=0.01)
priors = Variable(priorbox.forward(), volatile=True)
#dataset
print('Loading Dataset...')
if args.dataset == 'VOC':
testset = VOCDetection(
VOCroot, [('2007', 'test')], None, AnnotationTransform())
train_dataset = VOCDetection(VOCroot, train_sets, preproc(
img_dim, rgb_means, p), AnnotationTransform())
elif args.dataset == 'COCO':
testset = COCODetection(
COCOroot, [('2014', 'minival')], None)
train_dataset = COCODetection(COCOroot, train_sets, preproc(
img_dim, rgb_means, p))
else:
print('Only VOC and COCO are supported now!')
exit()
def train():
net.train()
# loss counters
loc_loss = 0 # epoch
conf_loss = 0
epoch = 0
if args.resume_net:
epoch = 0 + args.resume_epoch
epoch_size = len(train_dataset) // args.batch_size
max_iter = args.max_epoch * epoch_size
stepvalues_VOC = (150 * epoch_size, 200 * epoch_size, 250 * epoch_size)
stepvalues_COCO = (90 * epoch_size, 120 * epoch_size, 140 * epoch_size)
stepvalues = (stepvalues_VOC,stepvalues_COCO)[args.dataset=='COCO']
print('Training',args.version, 'on', train_dataset.name)
step_index = 0
if args.visdom:
# initialize visdom loss plot
lot = viz.line(
X=torch.zeros((1,)).cpu(),
Y=torch.zeros((1, 3)).cpu(),
opts=dict(
xlabel='Iteration',
ylabel='Loss',
title='Current SSD Training Loss',
legend=['Loc Loss', 'Conf Loss', 'Loss']
)
)
epoch_lot = viz.line(
X=torch.zeros((1,)).cpu(),
Y=torch.zeros((1, 3)).cpu(),
opts=dict(
xlabel='Epoch',
ylabel='Loss',
title='Epoch SSD Training Loss',
legend=['Loc Loss', 'Conf Loss', 'Loss']
)
)
if args.resume_epoch > 0:
start_iter = args.resume_epoch * epoch_size
else:
start_iter = 0
log_file = open(log_file_path,'w')
batch_iterator = None
mean_odm_loss_c = 0
mean_odm_loss_l = 0
mean_arm_loss_c = 0
mean_arm_loss_l = 0
for iteration in range(start_iter, max_iter+10):
if (iteration % epoch_size == 0):
# create batch iterator
batch_iterator = iter(data.DataLoader(train_dataset, batch_size,
shuffle=True, num_workers=args.num_workers, collate_fn=detection_collate))
loc_loss = 0
conf_loss = 0
if epoch % args.save_frequency == 0 and epoch > 0:
torch.save(net.state_dict(), os.path.join(save_folder,args.version+'_'+args.dataset + '_epoches_'+
repr(epoch) + '.pth'))
if epoch%args.test_frequency == 0 and epoch>0:
net.eval()
top_k = (300, 200)[args.dataset == 'COCO']
if args.dataset == 'VOC':
APs,mAP = test_net(test_save_dir, net, detector, args.cuda, testset,
BaseTransform(net.module.size, rgb_means,rgb_std, (2, 0, 1)),
top_k, thresh=0.01)
APs = [str(num) for num in APs]
mAP = str(mAP)
log_file.write(str(iteration)+' APs:\n'+'\n'.join(APs))
log_file.write('mAP:\n'+mAP+'\n')
else:
test_net(test_save_dir, net, detector, args.cuda, testset,
BaseTransform(net.module.size, rgb_means,rgb_std, (2, 0, 1)),
top_k, thresh=0.01)
net.train()
epoch += 1
load_t0 = time.time()
if iteration in stepvalues:
step_index = stepvalues.index(iteration)+1
if args.visdom:
viz.line(
X=torch.ones((1, 3)).cpu() * epoch,
Y=torch.Tensor([loc_loss, conf_loss,
loc_loss + conf_loss]).unsqueeze(0).cpu() / epoch_size,
win=epoch_lot,
update='append'
)
lr = adjust_learning_rate(optimizer, args.gamma, epoch, step_index, iteration, epoch_size)
# load train data
images, targets = next(batch_iterator)
#print(np.sum([torch.sum(anno[:,-1] == 2) for anno in targets]))
if args.cuda:
images = Variable(images.cuda())
targets = [Variable(anno.cuda(),volatile=True) for anno in targets]
else:
images = Variable(images)
targets = [Variable(anno, volatile=True) for anno in targets]
# forward
out = net(images)
arm_loc, arm_conf, odm_loc, odm_conf = out
# backprop
optimizer.zero_grad()
#arm branch loss
arm_loss_l,arm_loss_c = arm_criterion((arm_loc,arm_conf),priors,targets)
#odm branch loss
odm_loss_l, odm_loss_c = odm_criterion((odm_loc,odm_conf),priors,targets,(arm_loc,arm_conf),False)
mean_arm_loss_c += arm_loss_c.data[0]
mean_arm_loss_l += arm_loss_l.data[0]
mean_odm_loss_c += odm_loss_c.data[0]
mean_odm_loss_l += odm_loss_l.data[0]
loss = arm_loss_l+arm_loss_c+odm_loss_l+odm_loss_c
loss.backward()
optimizer.step()
load_t1 = time.time()
if iteration % 10 == 0:
print('Epoch:' + repr(epoch) + ' || epochiter: ' + repr(iteration % epoch_size) + '/' + repr(epoch_size)
+ '|| Total iter ' +
repr(iteration) + ' || AL: %.4f AC: %.4f OL: %.4f OC: %.4f||' % (
mean_arm_loss_l/10,mean_arm_loss_c/10,mean_odm_loss_l/10,mean_odm_loss_c/10) +
'Batch time: %.4f sec. ||' % (load_t1 - load_t0) + 'LR: %.8f' % (lr))
log_file.write('Epoch:' + repr(epoch) + ' || epochiter: ' + repr(iteration % epoch_size) + '/' + repr(epoch_size)
+ '|| Total iter ' +
repr(iteration) + ' || AL: %.4f AC: %.4f OL: %.4f OC: %.4f||' % (
mean_arm_loss_l/10,mean_arm_loss_c/10,mean_odm_loss_l/10,mean_odm_loss_c/10) +
'Batch time: %.4f sec. ||' % (load_t1 - load_t0) + 'LR: %.8f' % (lr)+'\n')
mean_odm_loss_c = 0
mean_odm_loss_l = 0
mean_arm_loss_c = 0
mean_arm_loss_l = 0
if args.visdom and args.send_images_to_visdom:
random_batch_index = np.random.randint(images.size(0))
viz.image(images.data[random_batch_index].cpu().numpy())
log_file.close()
torch.save(net.state_dict(), os.path.join(save_folder ,
'Final_' + args.version +'_' + args.dataset+ '.pth'))
def adjust_learning_rate(optimizer, gamma, epoch, step_index, iteration, epoch_size):
"""Sets the learning rate
# Adapted from PyTorch Imagenet example:
# https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
if epoch < args.warm_epoch:
lr = 1e-6 + (args.lr-1e-6) * iteration / (epoch_size * args.warm_epoch)
else:
lr = args.lr * (gamma ** (step_index))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def test_net(save_folder, net, detector, cuda, testset, transform, max_per_image=300, thresh=0.005):
if not os.path.exists(save_folder):
os.mkdir(save_folder)
# dump predictions and assoc. ground truth to text file for now
num_images = len(testset)
num_classes = (21, 81)[args.dataset == 'COCO']
all_boxes = [[[] for _ in range(num_images)]
for _ in range(num_classes)]
_t = {'im_detect': Timer(), 'misc': Timer()}
det_file = os.path.join(save_folder, 'detections.pkl')
if args.retest:
f = open(det_file,'rb')
all_boxes = pickle.load(f)
print('Evaluating detections')
testset.evaluate_detections(all_boxes, save_folder)
return
for i in range(num_images):
img = testset.pull_image(i)
x = Variable(transform(img).unsqueeze(0),volatile=True)
if cuda:
x = x.cuda()
_t['im_detect'].tic()
out = net(x=x, test=True) # forward pass
arm_loc,arm_conf,odm_loc,odm_conf = out
boxes, scores = detector.forward((odm_loc,odm_conf), priors,(arm_loc,arm_conf))
detect_time = _t['im_detect'].toc()
boxes = boxes[0]
scores=scores[0]
boxes = boxes.cpu().numpy()
scores = scores.cpu().numpy()
# scale each detection back up to the image
scale = torch.Tensor([img.shape[1], img.shape[0],
img.shape[1], img.shape[0]]).cpu().numpy()
boxes *= scale
_t['misc'].tic()
for j in range(1, num_classes):
inds = np.where(scores[:, j] > thresh)[0]
if len(inds) == 0:
all_boxes[j][i] = np.empty([0, 5], dtype=np.float32)
continue
c_bboxes = boxes[inds]
c_scores = scores[inds, j]
c_dets = np.hstack((c_bboxes, c_scores[:, np.newaxis])).astype(
np.float32, copy=False)
if args.dataset == 'VOC':
cpu = False
else:
cpu = False
keep = nms(c_dets, 0.45, force_cpu=cpu)
keep = keep[:50]
c_dets = c_dets[keep, :]
all_boxes[j][i] = c_dets
if max_per_image > 0:
image_scores = np.hstack([all_boxes[j][i][:, -1] for j in range(1,num_classes)])
if len(image_scores) > max_per_image:
image_thresh = np.sort(image_scores)[-max_per_image]
for j in range(1, num_classes):
keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0]
all_boxes[j][i] = all_boxes[j][i][keep, :]
nms_time = _t['misc'].toc()
if i % 20 == 0:
print('im_detect: {:d}/{:d} {:.3f}s {:.3f}s'
.format(i + 1, num_images, detect_time, nms_time))
_t['im_detect'].clear()
_t['misc'].clear()
with open(det_file, 'wb') as f:
pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL)
print('Evaluating detections')
if args.dataset == 'VOC':
APs,mAP = testset.evaluate_detections(all_boxes, save_folder)
return APs,mAP
else:
testset.evaluate_detections(all_boxes, save_folder)
if __name__ == '__main__':
train()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/linkchainiii/PytorchSSD.git
git@gitee.com:linkchainiii/PytorchSSD.git
linkchainiii
PytorchSSD
PytorchSSD
master

搜索帮助