代码拉取完成,页面将自动刷新
"""
GEMML code
------------------------------
Implementation of GEMML algorithm, which is proposed in the paper:
Robust Beamforming for RIS-aided Communications: Gradient Enhanced Manifold Meta Learning
References and Relevant Links
------------------------------
GitHub Repository:
https://github.com/FenghaoZhu/GEMML
Related arXiv Paper:
https://arxiv.org/abs/2402.10626
file introduction
------------------------------
this is the main function which can be run directly
@author: F. Zhu and X.Wang
"""
# <editor-fold desc="import package">
import random
import scipy.io as sio
import torch
from net import *
from tqdm import tqdm
import math
# </editor-fold>
# <editor-fold desc="set random seed">
seed = 42 # fix the random seed
torch.manual_seed(seed) # cpu random seed
torch.cuda.manual_seed(seed) # gpu random seed
torch.cuda.manual_seed_all(seed) # multi-gpu random seed
np.random.seed(seed) # numpy random seed
random.seed(seed) # python random seed
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# </editor-fold>
# <editor-fold desc="load channel">
H_t = sio.loadmat(f'dataset.mat')['HH'] # load the channel H, numpy format
G_t = sio.loadmat(f'dataset.mat')['GG'] # load the channel G, numpy format
user_weights = sio.loadmat(f'dataset.mat')['omega'].squeeze() # load the user weights, numpy format
regulated_user_weights = user_weights / np.sum(user_weights) # normalize the user weights
H_t = torch.tensor(H_t) # transforms from numpy to torch format
G_t = torch.tensor(G_t) # transforms from numpy to torch format
# </editor-fold>
# <editor-fold desc="training process">
WSR_list_per_sample = torch.zeros(nr_of_training, External_iteration) # record the WSR of each sample
# Iterate and optimize each sample
for item_index in range(nr_of_training):
# refresh the nn parameters at the beginning of each sample to guarantee the independence
# note that GEMML is pretraining free!
# initialize the meta learning network for the precoding matrix
optimizer_w = meta_optimizer_w(input_size_w, hidden_size_w, output_size_w)
# initialize the optimizer for the precoding matrix
adam_w = torch.optim.Adam(optimizer_w.parameters(), lr=optimizer_lr_w)
# initialize the meta learning network for the phase shift matrix
optimizer_theta = meta_optimizer_theta(input_size_theta, hidden_size_theta, output_size_theta)
# initialize the optimizer for the phase shift matrix
adam_theta = torch.optim.Adam(optimizer_theta.parameters(), lr=optimizer_lr_theta)
maxi = 0 # record the maximum WSR of each sample
# load the channel sample
G = G_t[:, :, item_index].to(torch.complex64) # dimension: nr_of_RIS_elements * nr_of_BS_antennas
H = H_t[:, :, item_index].to(torch.complex64) # dimension: nr_of_users * nr_of_RIS_elements
# initialize the precoding matrix and the phase shift matrix
theta = torch.randn(nr_of_RIS_elements).to(torch.float32) # initialize the phase shift matrix
theta_init = theta
cascaded_channel = H.conj() @ torch.diag(torch.exp(theta * 1j)) @ G # cascaded channel
# initialize the precoding matrix and the compressed precoding matrix
X, V = init_X(nr_of_BS_antennas, nr_of_users, cascaded_channel, total_power)
X_init = X
transmitter_precoder_init = V
transmitter_precoder = transmitter_precoder_init
LossAccumulated_w = 0 # record the accumulated loss in the meta learning network for precoding matrix
LossAccumulated_theta = 0 # record the accumulated loss in the meta learning network for phase shift matrix
for epoch in range(External_iteration):
# update the precoding matrix and the phase shift matrix in outer loop
# one outer loop includes Internal_iteration inner loops
# when updating the phase shift matrix, the compressed precoding matrix is inherited from the last outer loop
loss_theta, sum_loss_theta, theta = meta_learner_theta(optimizer_theta, Internal_iteration,
regulated_user_weights, G, H,
X.clone().detach(), # clone the precoding matrix
theta_init, # update the phase shift matrix from scratch
noise_power)
# when updating the compressed precoding matrix, the phase shift matrix is inherited from the last outer loop
loss_w, sum_loss_w, X = meta_learner_w(optimizer_w, Internal_iteration,
regulated_user_weights, G, H,
X_init, # update the precoding matrix from scratch
theta.clone().detach(), # clone the phase shift matrix
noise_power)
# handle the normalization of the compressed precoding matrix
cascaded_channel = H.conj() @ torch.diag(torch.exp(theta * 1j)) @ G # cascaded channel
transmitter_precoder = cascaded_channel.conj().T @ X # compute the precoding matrix before normalization
normV = torch.norm(transmitter_precoder) # compute the norm of the precoding matrix before normalization
WW = math.sqrt(total_power) / normV # normalization coefficient
X = X * WW # normalize the compressed precoding matrix
transmitter_precoder = transmitter_precoder * WW # normalize the precoding matrix
# compute the loss of each sample
loss_total = -compute_weighted_sum_rate(regulated_user_weights, G, H, transmitter_precoder, theta, noise_power)
LossAccumulated_w = LossAccumulated_w + loss_total # accumulate the precoding matrix network loss
LossAccumulated_theta = LossAccumulated_theta + loss_total # accumulate the shift matrix network loss
MSR = compute_weighted_sum_rate(user_weights, G, H, transmitter_precoder, theta.detach(), noise_power)
WSR_list_per_sample[item_index, epoch] = MSR # record the WSR of each sample
if MSR > maxi: # update maxi only when the WSR is larger than the current maximum WSR
maxi = MSR.item() # record the maximum WSR of each sample
print('max', maxi, 'epoch=', epoch, 'item', item_index) # print the maximum WSR of each sample
if (epoch + 1) % Update_steps == 0: # update the meta learning network every Update_steps outer loops
adam_w.zero_grad()
adam_theta.zero_grad()
Average_loss_w = LossAccumulated_w / Update_steps
Average_loss_theta = LossAccumulated_theta / Update_steps
Average_loss_w.backward(retain_graph=True)
Average_loss_theta.backward(retain_graph=True)
adam_w.step()
if (epoch + 1) % 5 == 0:
adam_theta.step()
MSR = compute_weighted_sum_rate(regulated_user_weights, G, H, transmitter_precoder, theta.detach(),
noise_power)
LossAccumulated_w = 0 # reset the accumulated loss in the meta learning network for precoding matrix
LossAccumulated_theta = 0 # reset the accumulated loss in the meta learning network for phase shift matrix
# save the WSR of each sample
WSR_matrix = WSR_list_per_sample
sio.savemat(f'./GEMML_result.mat',
{'WSR_matrix': WSR_matrix.detach().numpy()})
# </editor-fold>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。