1 Star 0 Fork 0

lifw88/yolov4-pytorch

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
predict.py 4.63 KB
一键复制 编辑 原始数据 按行查看 历史
Bubbliiiing 提交于 2021-05-21 13:08 . Add files via upload
#----------------------------------------------------#
# 对视频中的predict.py进行了修改,
# 将单张图片预测、摄像头检测和FPS测试功能
# 整合到了一个py文件中,通过指定mode进行模式的修改。
#----------------------------------------------------#
import time
import cv2
import numpy as np
from PIL import Image
from yolo import YOLO
if __name__ == "__main__":
yolo = YOLO()
#-------------------------------------------------------------------------#
# mode用于指定测试的模式:
# 'predict'表示单张图片预测
# 'video'表示视频检测
# 'fps'表示测试fps
#-------------------------------------------------------------------------#
mode = "predict"
#-------------------------------------------------------------------------#
# video_path用于指定视频的路径,当video_path=0时表示检测摄像头
# video_save_path表示视频保存的路径,当video_save_path=""时表示不保存
# video_fps用于保存的视频的fps
# video_path、video_save_path和video_fps仅在mode='video'时有效
# 保存视频时需要ctrl+c退出才会完成完整的保存步骤,不可直接结束程序。
#-------------------------------------------------------------------------#
video_path = 0
video_save_path = ""
video_fps = 25.0
if mode == "predict":
'''
1、该代码无法直接进行批量预测,如果想要批量预测,可以利用os.listdir()遍历文件夹,利用Image.open打开图片文件进行预测。
具体流程可以参考get_dr_txt.py,在get_dr_txt.py即实现了遍历还实现了目标信息的保存。
2、如果想要进行检测完的图片的保存,利用r_image.save("img.jpg")即可保存,直接在predict.py里进行修改即可。
3、如果想要获得预测框的坐标,可以进入yolo.detect_image函数,在绘图部分读取top,left,bottom,right这四个值。
4、如果想要利用预测框截取下目标,可以进入yolo.detect_image函数,在绘图部分利用获取到的top,left,bottom,right这四个值
在原图上利用矩阵的方式进行截取。
5、如果想要在预测图上写额外的字,比如检测到的特定目标的数量,可以进入yolo.detect_image函数,在绘图部分对predicted_class进行判断,
比如判断if predicted_class == 'car': 即可判断当前目标是否为车,然后记录数量即可。利用draw.text即可写字。
'''
while True:
img = input('Input image filename:')
try:
image = Image.open(img)
except:
print('Open Error! Try again!')
continue
else:
r_image = yolo.detect_image(image)
r_image.show()
elif mode == "video":
capture=cv2.VideoCapture(video_path)
if video_save_path!="":
fourcc = cv2.VideoWriter_fourcc(*'XVID')
size = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
out = cv2.VideoWriter(video_save_path, fourcc, video_fps, size)
fps = 0.0
while(True):
t1 = time.time()
# 读取某一帧
ref,frame=capture.read()
# 格式转变,BGRtoRGB
frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
# 转变成Image
frame = Image.fromarray(np.uint8(frame))
# 进行检测
frame = np.array(yolo.detect_image(frame))
# RGBtoBGR满足opencv显示格式
frame = cv2.cvtColor(frame,cv2.COLOR_RGB2BGR)
fps = ( fps + (1./(time.time()-t1)) ) / 2
print("fps= %.2f"%(fps))
frame = cv2.putText(frame, "fps= %.2f"%(fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imshow("video",frame)
c= cv2.waitKey(1) & 0xff
if video_save_path!="":
out.write(frame)
if c==27:
capture.release()
break
capture.release()
out.release()
cv2.destroyAllWindows()
elif mode == "fps":
test_interval = 100
img = Image.open('img/street.jpg')
tact_time = yolo.get_FPS(img, test_interval)
print(str(tact_time) + ' seconds, ' + str(1/tact_time) + 'FPS, @batch_size 1')
else:
raise AssertionError("Please specify the correct mode: 'predict', 'video' or 'fps'.")
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/lifw88/yolov4-pytorch.git
git@gitee.com:lifw88/yolov4-pytorch.git
lifw88
yolov4-pytorch
yolov4-pytorch
master

搜索帮助