代码拉取完成,页面将自动刷新
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import torch
from transformers import TrainingArguments, AutoModelForCausalLM, AutoTokenizer
from trl import DPOTrainer
from peft import get_peft_model, LoraConfig, TaskType
from datasets import load_dataset
def find_all_linear_names(model):
cls = torch.nn.Linear
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names:
lora_module_names.remove('lm_head')
return list(lora_module_names)
def init_model():
device = 'cuda:0'
# Do model patching and add fast LoRA weights
model_name_or_path = "minimind"
tokenizer_name_or_path = "minimind"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, trust_remote_code=True, use_fast=False)
tokenizer.pad_token = tokenizer.eos_token
target_modules = find_all_linear_names(model)
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=8,
lora_alpha=16,
lora_dropout=0.1,
inference_mode=False,
target_modules=target_modules
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
model = model.to(device)
return model, tokenizer
if __name__ == '__main__':
model, tokenizer = init_model()
training_args = TrainingArguments(output_dir="./minimind_dpo",
per_device_train_batch_size=1,
remove_unused_columns=False)
################
# Dataset
################
# 确保路径正确,文件存在
dataset_path = './dataset/dpo/train_data.json'
# 加载数据集
train_dataset = load_dataset('json', data_files=dataset_path)
dpo_trainer = DPOTrainer(
model,
ref_model=None,
args=training_args,
beta=0.1,
train_dataset=train_dataset['train'],
tokenizer=tokenizer,
max_length=512,
max_prompt_length=512
)
dpo_trainer.train()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。