代码拉取完成,页面将自动刷新
import torch
import cv2
import os
import glob
from torch.utils.data import Dataset
import random
class ISBI_Loader(Dataset):
def __init__(self, data_path):
# 初始化函数,读取所有data_path下的图片
self.data_path = data_path
self.imgs_path = glob.glob(os.path.join(data_path, 'image/*.png'))
# def augment(self, image, flipCode):
# # 使用cv2.flip进行数据增强,filpCode为1水平翻转,0垂直翻转,-1水平+垂直翻转
# flip = cv2.flip(image, flipCode)
# return flip
def __getitem__(self, index):
# 根据index读取图片
image_path = self.imgs_path[index]
# 根据image_path生成label_path
label_path = image_path.replace('image', 'label')
# 读取训练图片和标签图片
image = cv2.imread(image_path)
label = cv2.imread(label_path)
# flipCode = random.choice([-1, 0, 1, 2])
# if flipCode != 2:
# image = self.augment(image, flipCode)
# label = self.augment(label, flipCode)
# 将数据转为单通道的图片
#image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
#label = cv2.cvtColor(label, cv2.COLOR_BGR2GRAY)
image = image.reshape(1, image.shape[0], image.shape[1])
label = label.reshape(1, label.shape[0], label.shape[1])
# 处理标签,将像素值为255的改为1
if label.max() > 1:
label = label / 255
# 随机进行数据增强,为2时不做处理
return image, label
def __len__(self):
# 返回训练集大小
return len(self.imgs_path)
if __name__ == "__main__":
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
isbi_dataset = ISBI_Loader("C:/Users/12517/Desktop/IMG_LABEL/train")
print("数据个数:", len(isbi_dataset))
train_loader = torch.utils.data.DataLoader(dataset=isbi_dataset,
batch_size=2,
shuffle=True)
for image, label in train_loader:
print(image.shape)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。