1 Star 0 Fork 0

Lengien/mindspore_jasper

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
export.py 2.54 KB
一键复制 编辑 原始数据 按行查看 历史
Lengien 提交于 2021-10-25 20:23 . 9st
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
export checkpoint file to mindir model
"""
import json
import argparse
import numpy as np
from mindspore import context, Tensor
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
from src.model import Jasper
from src.config import train_config, encoder_kw, decoder_kw
parser = argparse.ArgumentParser(description='Export DeepSpeech model to Mindir')
parser.add_argument('--pre_trained_model_path', type=str, default='', help=' existed checkpoint path')
args = parser.parse_args()
if __name__ == '__main__':
config = train_config
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
with open(config.DataConfig.labels_path) as label_file:
labels = json.load(label_file)
deepspeech_net = DeepSpeechModel(batch_size=1,
rnn_hidden_size=config.ModelConfig.hidden_size,
nb_layers=config.ModelConfig.hidden_layers,
labels=labels,
rnn_type=config.ModelConfig.rnn_type,
audio_conf=config.DataConfig.SpectConfig,
bidirectional=True)
jasper_net = Jasper(encoder_kw=encoder_kw, decoder_kw=decoder_kw)
param_dict = load_checkpoint(args.pre_trained_model_path)
load_param_into_net(jasper_net, param_dict)
print('Successfully loading the pre-trained model')
# 3500 is the max length in evaluation dataset(LibriSpeech). This is consistent with that in dataset.py
# The length is fixed to this value because Mindspore does not support dynamic shape currently
input_np = np.random.uniform(0.0, 1.0, size=[1, 1, 161, 3500]).astype(np.float32)
length = np.array([15], dtype=np.int32)
export(jasper_net, Tensor(input_np), Tensor(length), file_name="jasper.mindir", file_format='MINDIR')
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/legendlengien/mindspore_jasper.git
git@gitee.com:legendlengien/mindspore_jasper.git
legendlengien
mindspore_jasper
mindspore_jasper
master

搜索帮助