1 Star 1 Fork 2

Franky/ctf-tools

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
puzzlefull.py 16.96 KB
一键复制 编辑 原始数据 按行查看 历史
truongkma 提交于 2015-10-14 09:12 . ctf tools
#!/usr/bin/env python
## @title CSCE-625 Programming Assignment 2 : Eight Puzzle
## @author Karthik Venugopal (k4rthikv@gmail.com)
## @date 09-19-2013
# Implementation of a solution to the eight-puzzle problem,
# using each of DFS, BFS, DLS, IDS, Greedy Best-First, A-*,
# ID-A*
import sys;
import re;
import math;
import time;
import collections;
def GOAL_STATE(): return [1,2,3,4,5,6,7,8,0] # The constant goal state
usedStates={}; # List of states already visited by algorithm. [State => (parent, direction from parent, depth encountered)]
knownHeuristics={}; # List of heuristics computed for various states. [State => heuristic]
spaceComplexity = 0; # Parameter used to judge space and time complexity.
timeComplexity = 0; # Actual semantic will depend on the algorithm
# Representing enums
def enum(*sequential, **named):
enums = dict(zip(sequential, range(len(sequential))), **named);
reverse = dict((value, key) for key, value in enums.iteritems());
enums['reverse_mapping'] = reverse;
return type('Enum', (), enums);
# Representing setting for various program runtime parameters
DIRECTIONS = enum(UP=-3, DOWN=3, RIGHT=1, LEFT=-1); # Direction flipped from one state to next
QUEUEING = enum(STACK=1, QUEUE=2); # Different queueing between BFS and DFS
UI_ALGORITHM = enum(DFS=1, BFS=2, DLS=3, IDS=4); # List of uninformed search algorithms
IN_ALGORITHM = enum(GBF=5, AST=6, IDA=7); # List of informed search algorithms
HEURISTICS = enum(BOOLEAN=1, MANHATTAN=2); # Two heuristic used in informed search
# Check inversion number for input state
def getInversionNumber(nodeState):
return len([(x,y) for x in range(len(nodeState)-1) for y in range(x+1,9)
if nodeState[x]>nodeState[y] and (not (nodeState[x]==0 or nodeState[y]==0))]);
# Parse input arguments to get algo and initial state
def parseInputArgs():
statePattern = re.compile('^([^ ]+) \((([0-8] ){8}[0-8])\)( [h0-9]+){0,1}$');
patternMatch = statePattern.match(' '.join(sys.argv[1:]));
if patternMatch is None:
print "Invalid state pattern";
exit(1);
algoName = patternMatch.group(1).upper(); # Set algorithm to a defined enum
if algoName=='DFS':
algoName=UI_ALGORITHM.DFS;
elif algoName=='BFS':
algoName = UI_ALGORITHM.BFS;
elif algoName=='DLS':
algoName = UI_ALGORITHM.DLS;
elif algoName=='IDS':
algoName = UI_ALGORITHM.IDS;
elif algoName=='GREEDY':
algoName = IN_ALGORITHM.GBF;
elif algoName=='A-STAR':
algoName = IN_ALGORITHM.AST;
elif algoName=='IDA-STAR':
algoName = IN_ALGORITHM.IDA;
else:
print "Unrecognized algorithm: "+algoName;
exit(1);
initialState = patternMatch.group(2); # Read initial state string from input args
initialState = [int(x) for x in initialState if x.isdigit()]; # Initialize initial state to list
if not (getInversionNumber(initialState)%2 == getInversionNumber(GOAL_STATE())%2): # Compare inversion numbers for goal and initial state
print "No path exists from initial state "+str(initialState)+" to goal state "+str(GOAL_STATE());
exit(1);
if algoName<5: # If uninformed search, 3rd parameter is max search depth
if patternMatch.group(4) is None: # Read max search depth parameter from input (optional)
maxSearchDepth = 0;
else:
maxSearchDepth = int(patternMatch.group(4));
return [algoName, initialState, maxSearchDepth];
else: # If informed search, 3rd parameter is heuristic (required)
if patternMatch.group(4) is None:
print "Heuristic required for informed search. \'h1\' (for tiles out of place) or \'h2\' for Manhattan distance";
exit(1);
else:
heuristicName = patternMatch.group(4).strip().upper();
print "Heuristic: "+heuristicName;
if heuristicName == 'H1':
heuristicName = HEURISTICS.BOOLEAN;
elif heuristicName == 'H2':
heuristicName = HEURISTICS.MANHATTAN;
else:
print "Unrecognized value for heuristic. Should be \'h1\' (for tiles out of place) or \'h2\' for Manhattan distance"
exit(1);
return [algoName, initialState, heuristicName];
# Calculate heuristic value for a given state as number of tiles out of place
def getBooleanDistance(nodeState):
heuristicValue = 0;
for i in range(len(nodeState)):
if nodeState[i]==0: # Discount the blank tile
continue;
if GOAL_STATE()[i] != nodeState[i]: # Compare value at index between nodeState and goalState
heuristicValue+=1;
return heuristicValue;
# Calculate heuristic value for a given state as Manhattan distance of the tiles
def getManhattanDistance(nodeState):
heuristicValue = 0;
for i in range(1,len(nodeState)):
intendedIndex = GOAL_STATE().index(i);
actualIndex = nodeState.index(i);
xMovement = math.fabs(actualIndex-intendedIndex)%3;
yMovement = int(math.fabs(actualIndex-intendedIndex)/3);
heuristicValue += (xMovement+yMovement);
return int(heuristicValue);
# Calculate actual node cost as (heuristic + node depth)
# Heuristic function could be boolean or Manhattan distance
def getTotalCost(nodeState, heuristicFunction):
return heuristicFunction(nodeState)+usedStates[str(nodeState)][2];
# Get valid child states from a given state. Does not include states in `usedStates`
def getChildStates(currentState):
global usedStates;
zeroIndex = currentState.index(0);
xIndex = zeroIndex%3; # x-Index of '0' in the 3x3 box
yIndex = zeroIndex/3; # y-Index of '0' in the 3x3 box
validDirections = [x for x in [1, -1] if ((xIndex%3)+x) in [0,1,2]]; # Get directions movable in X-direction
validDirections.extend([y*3 for y in [-1, 1] if ((yIndex%3)+y) in [0,1,2]]); # Get directions movable in Y-direction
childStates = collections.deque(); # Deques used to optimize front-side inserts
for validDirection in validDirections: # Move '0' in the corresponding direction and check for loop
tempState = currentState[:];
(tempState[zeroIndex],tempState[zeroIndex+validDirection]) = (tempState[zeroIndex+validDirection],tempState[zeroIndex]);
if str(tempState) not in usedStates: # Child state is valid only if first encounter
childStates.append(tempState);
currentDepth = usedStates[str(currentState)][2]; # Depth of the parent node
usedStates[str(tempState)]=(currentState,validDirection, currentDepth+1);
return childStates;
def addChildrenToList(nodeList, childStates, queueingMethod):
if queueingMethod==QUEUEING.STACK: # Queueing for DFS
nodeList.extendleft(childStates);
elif queueingMethod==QUEUEING.QUEUE: # Queueing for BFS
nodeList.extend(childStates); # Prepend child states to queue. If childStates is empty, the sibling of current node will be taken next
return nodeList;
# Actual implementation of an uninformed search. Based on parameters passed for queueing mechanism and search depth,
# runs BFS, DFS or a variant
def runUninformedSearch(initialState, queueingMethod, maxSearchDepth=0):
global usedStates; # Reset usedStates to default before starting search.
usedStates={};
usedStates[str(initialState)] = (None, None, 1);
global timeComplexity;
global spaceComplexity;
nodeList = collections.deque(); # Stores list of colored nodes not yet expanded
nodeList.append(initialState);
allNodesVisited=True;
while(len(nodeList)>0):
currentState = nodeList.popleft(); # Remove element to extend all its children
currentDepth = usedStates[str(currentState)][2];
timeComplexity=timeComplexity+1;
if currentState==GOAL_STATE(): # If current node is goal, end search
return currentState;
if maxSearchDepth<=0 or currentDepth<maxSearchDepth: # Expand to children only if depth limit hasn't been reached
childStates = getChildStates(currentState); # Retrieve child states for node
nodeList = addChildrenToList(nodeList, childStates, queueingMethod); # Add children to list according to algorithm
else:
allNodesVisited=False;
if len(nodeList)>spaceComplexity:
spaceComplexity = len(nodeList);
return allNodesVisited;
# Based on algorithm and max depth, define parameters to run uninformed search
def setupUninformedSearch(algoName, initialState, maxSearchDepth=0):
global timeComplexity;
timeComplexity=0;
global spaceComplexity;
spaceComplexity = 1;
if algoName==UI_ALGORITHM.DFS or algoName==UI_ALGORITHM.DLS: # Run DFS algorithm for DFS and DLS (maxSearchDepth will determine which one)
return runUninformedSearch(initialState, QUEUEING.STACK, maxSearchDepth);
elif algoName==UI_ALGORITHM.BFS: # Run BFS algorithm
return runUninformedSearch(initialState, QUEUEING.QUEUE, maxSearchDepth);
elif algoName==UI_ALGORITHM.IDS: # Run IDS algorithm
currentDepthLimit=0; # Current depth IDS is limited to
searchResult = None; # Decides if the DLS can run any deeper
while searchResult is not True and type(searchResult) is not list:
currentDepthLimit=currentDepthLimit+1; # Run DLS while incrementing max depth each time
searchResult = runUninformedSearch(initialState, QUEUEING.STACK, currentDepthLimit);
return searchResult;
# Actual implementation of an informed search. Based on cost function,
# runs Greedy Best-First or A-*
def runInformedSearch(initialState, costFunction):
global timeComplexity;
timeComplexity=0;
global spaceComplexity;
spaceComplexity = 1;
nodeList = list();
nodeList.append(initialState);
global knownHeuristics;
knownHeuristics[str(initialState)] = costFunction(initialState);
while(len(nodeList)>0):
currentState = nodeList.pop(0);
timeComplexity +=1;
if currentState == GOAL_STATE():
return currentState;
childStates = getChildStates(currentState);
for childState in childStates:
childHeuristic = knownHeuristics[str(childState)] = costFunction(childState);
insertPosition=0;
for nodeState in nodeList:
if knownHeuristics[str(nodeState)] > childHeuristic:
break;
else:
insertPosition+=1;
nodeList.insert(insertPosition, childState);
if spaceComplexity < len(nodeList):
spaceComplexity = len(nodeList);
# DFS Contour for IDA-*
def DFSContour(currentNode, fLimit, costFunction, recursionDepth=0):
global spaceComplexity;
if spaceComplexity < recursionDepth:
spaceComplexity = recursionDepth;
global timeComplexity;
if str(currentNode) in knownHeuristics:
pathCost = knownHeuristics[str(currentNode)];
else:
pathCost = costFunction(currentNode);
knownHeuristics[str(currentNode)] = pathCost;
if pathCost>fLimit:
return (None, pathCost);
if currentNode == GOAL_STATE():
return (currentNode, fLimit);
minF = sys.maxint;
childStates = getChildStates(currentNode);
for childState in childStates:
timeComplexity = timeComplexity+1;
(searchResult, childF) = DFSContour(childState, fLimit, costFunction, recursionDepth+1);
if searchResult is not None:
return (searchResult, fLimit);
else:
minF = min(minF, childF);
return (None, minF);
# Implementation of ID-A*
def runIDAStar(initialState, costFunction):
fLimit = costFunction(initialState);
global knownHeuristics;
global usedStates;
global timeComplexity;
timeComplexity = 1;
while(True):
knownHeuristics = {};
knownHeuristics[str(initialState)] = fLimit;
usedStates = {};
usedStates[str(initialState)] = (None, None, 1);
(searchResult, fLimit) = DFSContour(initialState, fLimit, costFunction);
if searchResult is not None:
return searchResult;
if fLimit==sys.maxint:
return None;
# Based on algorithm and heuristic, define parameters to run informed search
def setupInformedSearch(algoName, initialState, heuristicName):
if heuristicName == HEURISTICS.BOOLEAN:
heuristicFunction = getBooleanDistance;
elif heuristicName == HEURISTICS.MANHATTAN:
heuristicFunction = getManhattanDistance;
if algoName==IN_ALGORITHM.GBF:
return runInformedSearch(initialState, lambda nodeState:heuristicFunction(nodeState));
elif algoName==IN_ALGORITHM.AST:
return runInformedSearch(initialState, lambda nodeState:getTotalCost(nodeState, heuristicFunction));
elif algoName==IN_ALGORITHM.IDA:
return runIDAStar(initialState, lambda nodeState:getTotalCost(nodeState, heuristicFunction));
# Follow direction that algorithm took from root node to goal
def followRootToGoal(currentNode):
movementList = collections.deque();
while(currentNode is not None):
nextDirection = usedStates[str(currentNode)][1];
if nextDirection is not None:
movementList.appendleft(DIRECTIONS.reverse_mapping[nextDirection]);
currentNode = usedStates[str(currentNode)][0];
return movementList;
# Program main routine. Expects initial state as argument
if __name__=="__main__":
searchParams = parseInputArgs(); # Check if input is a valid initial state and return run parameters
print str(searchParams);
# Recursion in DFS Contour can exceed default recursion limit
sys.setrecursionlimit(10000);
initialState = searchParams[1];
usedStates[str(initialState)] = (None, None, 1); # Root node
startTime = time.time();
if searchParams[0] < 5: # Algorithm is uninformed
goalNode = setupUninformedSearch(searchParams[0], initialState, searchParams[2]); # Run uninformed search algorithm
else: # Algorithm is informed
goalNode = setupInformedSearch(searchParams[0], initialState, searchParams[2]); # Run informed search algorithm
elapsedTime = time.time() - startTime;
if type(goalNode) is not list:
print "Goal not found. Nodes visited: "+str(timeComplexity);
exit(0);
startToGoal = followRootToGoal(goalNode); # Follow nodes from root to goal (in opposite order)
print "\nSolution:\n----------";
if len(startToGoal)<=50:
print list(startToGoal),'\n';
print "Solution takes "+str(len(startToGoal))+" movements to get to the goal";
if searchParams[0] != IN_ALGORITHM.IDA:
# Logging program time and search depth
print "\nNodes visited: ",str(timeComplexity);
print "Maximum length of node list: ",str(spaceComplexity);
print "Search run-time: ",str(elapsedTime),"seconds\n";
else:
print "\nNodes visited: ",str(timeComplexity);
print "Maximum recursion depth: ",str(spaceComplexity);
print "Search run-time: ",str(elapsedTime),"seconds\n";
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/kuorumin/ctf-tools.git
git@gitee.com:kuorumin/ctf-tools.git
kuorumin
ctf-tools
ctf-tools
master

搜索帮助