1 Star 0 Fork 0

KeyToon9/blender-addons

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
io_export_paper_model.py 117.22 KB
一键复制 编辑 原始数据 按行查看 历史
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519
# -*- coding: utf-8 -*-
# This script is Free software. Please share and reuse.
# ♡2010-2020 Adam Dominec <adominec@gmail.com>
## Code structure
# This file consists of several components, in this order:
# * Unfolding and baking
# * Export (SVG or PDF)
# * User interface
# During the unfold process, the mesh is mirrored into a 2D structure: UVFace, UVEdge, UVVertex.
bl_info = {
"name": "Export Paper Model",
"author": "Addam Dominec",
"version": (1, 2),
"blender": (2, 83, 0),
"location": "File > Export > Paper Model",
"warning": "",
"description": "Export printable net of the active mesh",
"doc_url": "{BLENDER_MANUAL_URL}/addons/import_export/paper_model.html",
"category": "Import-Export",
}
# Task: split into four files (SVG and PDF separately)
# * does any portion of baking belong into the export module?
# * sketch out the code for GCODE and two-sided export
# TODO:
# QuickSweepline is very much broken -- it throws GeometryError for all nets > ~15 faces
# rotate islands to minimize area -- and change that only if necessary to fill the page size
# check conflicts in island naming and either:
# * append a number to the conflicting names or
# * enumerate faces uniquely within all islands of the same name (requires a check that both label and abbr. equals)
import bpy
import bl_operators
import bmesh
import mathutils as M
from re import compile as re_compile
from itertools import chain, repeat, product, combinations
from math import pi, ceil, asin, atan2
import os.path as os_path
default_priority_effect = {
'CONVEX': 0.5,
'CONCAVE': 1,
'LENGTH': -0.05
}
global_paper_sizes = [
('USER', "User defined", "User defined paper size"),
('A4', "A4", "International standard paper size"),
('A3', "A3", "International standard paper size"),
('US_LETTER', "Letter", "North American paper size"),
('US_LEGAL', "Legal", "North American paper size")
]
def first_letters(text):
"""Iterator over the first letter of each word"""
for match in first_letters.pattern.finditer(text):
yield text[match.start()]
first_letters.pattern = re_compile(r"((?<!\w)\w)|\d")
def is_upsidedown_wrong(name):
"""Tell if the string would get a different meaning if written upside down"""
chars = set(name)
mistakable = set("69NZMWpbqd")
rotatable = set("80oOxXIl").union(mistakable)
return chars.issubset(rotatable) and not chars.isdisjoint(mistakable)
def pairs(sequence):
"""Generate consecutive pairs throughout the given sequence; at last, it gives elements last, first."""
i = iter(sequence)
previous = first = next(i)
for this in i:
yield previous, this
previous = this
yield this, first
def fitting_matrix(v1, v2):
"""Get a matrix that rotates v1 to the same direction as v2"""
return (1 / v1.length_squared) * M.Matrix((
(v1.x*v2.x + v1.y*v2.y, v1.y*v2.x - v1.x*v2.y),
(v1.x*v2.y - v1.y*v2.x, v1.x*v2.x + v1.y*v2.y)))
def z_up_matrix(n):
"""Get a rotation matrix that aligns given vector upwards."""
b = n.xy.length
s = n.length
if b > 0:
return M.Matrix((
(n.x*n.z/(b*s), n.y*n.z/(b*s), -b/s),
(-n.y/b, n.x/b, 0),
(0, 0, 0)
))
else:
# no need for rotation
return M.Matrix((
(1, 0, 0),
(0, (-1 if n.z < 0 else 1), 0),
(0, 0, 0)
))
def cage_fit(points, aspect):
"""Find rotation for a minimum bounding box with a given aspect ratio
returns a tuple: rotation angle, box height"""
def guesses(polygon):
"""Yield all tentative extrema of the bounding box height wrt. polygon rotation"""
for a, b in pairs(polygon):
if a == b:
continue
direction = (b - a).normalized()
sinx, cosx = -direction.y, direction.x
rot = M.Matrix(((cosx, -sinx), (sinx, cosx)))
rot_polygon = [rot @ p for p in polygon]
left, right = [fn(rot_polygon, key=lambda p: p.to_tuple()) for fn in (min, max)]
bottom, top = [fn(rot_polygon, key=lambda p: p.yx.to_tuple()) for fn in (min, max)]
horz, vert = right - left, top - bottom
# solve (rot * a).y == (rot * b).y
yield max(aspect * horz.x, vert.y), sinx, cosx
# solve (rot * a).x == (rot * b).x
yield max(horz.x, aspect * vert.y), -cosx, sinx
# solve aspect * (rot * (right - left)).x == (rot * (top - bottom)).y
# using substitution t = tan(rot / 2)
q = aspect * horz.x - vert.y
r = vert.x + aspect * horz.y
t = ((r**2 + q**2)**0.5 - r) / q if q != 0 else 0
t = -1 / t if abs(t) > 1 else t # pick the positive solution
siny, cosy = 2 * t / (1 + t**2), (1 - t**2) / (1 + t**2)
rot = M.Matrix(((cosy, -siny), (siny, cosy)))
for p in rot_polygon:
p[:] = rot @ p # note: this also modifies left, right, bottom, top
if left.x < right.x and bottom.y < top.y and all(left.x <= p.x <= right.x and bottom.y <= p.y <= top.y for p in rot_polygon):
yield max(aspect * (right - left).x, (top - bottom).y), sinx*cosy + cosx*siny, cosx*cosy - sinx*siny
polygon = [points[i] for i in M.geometry.convex_hull_2d(points)]
height, sinx, cosx = min(guesses(polygon))
return atan2(sinx, cosx), height
def create_blank_image(image_name, dimensions, alpha=1):
"""Create a new image and assign white color to all its pixels"""
image_name = image_name[:64]
width, height = int(dimensions.x), int(dimensions.y)
image = bpy.data.images.new(image_name, width, height, alpha=True)
if image.users > 0:
raise UnfoldError(
"There is something wrong with the material of the model. "
"Please report this on the BlenderArtists forum. Export failed.")
image.pixels = [1, 1, 1, alpha] * (width * height)
image.file_format = 'PNG'
return image
def store_rna_properties(*datablocks):
return [{prop.identifier: getattr(data, prop.identifier) for prop in data.rna_type.properties if not prop.is_readonly} for data in datablocks]
def apply_rna_properties(memory, *datablocks):
for recall, data in zip(memory, datablocks):
for key, value in recall.items():
setattr(data, key, value)
class UnfoldError(ValueError):
def mesh_select(self):
if len(self.args) > 1:
elems, bm = self.args[1:3]
bpy.context.tool_settings.mesh_select_mode = [bool(elems[key]) for key in ("verts", "edges", "faces")]
for elem in chain(bm.verts, bm.edges, bm.faces):
elem.select = False
for elem in chain(*elems.values()):
elem.select_set(True)
bmesh.update_edit_mesh(bpy.context.object.data, loop_triangles=False, destructive=False)
class Unfolder:
def __init__(self, ob):
self.do_create_uvmap = False
bm = bmesh.from_edit_mesh(ob.data)
self.mesh = Mesh(bm, ob.matrix_world)
self.mesh.check_correct()
def __del__(self):
if not self.do_create_uvmap:
self.mesh.delete_uvmap()
def prepare(self, cage_size=None, priority_effect=default_priority_effect, scale=1, limit_by_page=False):
"""Create the islands of the net"""
self.mesh.generate_cuts(cage_size / scale if limit_by_page and cage_size else None, priority_effect)
self.mesh.finalize_islands(cage_size or M.Vector((1, 1)))
self.mesh.enumerate_islands()
self.mesh.save_uv()
def copy_island_names(self, island_list):
"""Copy island label and abbreviation from the best matching island in the list"""
orig_islands = [{face.id for face in item.faces} for item in island_list]
matching = list()
for i, island in enumerate(self.mesh.islands):
islfaces = {face.index for face in island.faces}
matching.extend((len(islfaces.intersection(item)), i, j) for j, item in enumerate(orig_islands))
matching.sort(reverse=True)
available_new = [True for island in self.mesh.islands]
available_orig = [True for item in island_list]
for face_count, i, j in matching:
if available_new[i] and available_orig[j]:
available_new[i] = available_orig[j] = False
self.mesh.islands[i].label = island_list[j].label
self.mesh.islands[i].abbreviation = island_list[j].abbreviation
def save(self, properties):
"""Export the document"""
# Note about scale: input is directly in blender length
# Mesh.scale_islands multiplies everything by a user-defined ratio
# exporters (SVG or PDF) multiply everything by 1000 (output in millimeters)
Exporter = Svg if properties.file_format == 'SVG' else Pdf
filepath = properties.filepath
extension = properties.file_format.lower()
filepath = bpy.path.ensure_ext(filepath, "." + extension)
# page size in meters
page_size = M.Vector((properties.output_size_x, properties.output_size_y))
# printable area size in meters
printable_size = page_size - 2 * properties.output_margin * M.Vector((1, 1))
unit_scale = bpy.context.scene.unit_settings.scale_length
ppm = properties.output_dpi * 100 / 2.54 # pixels per meter
# after this call, all dimensions will be in meters
self.mesh.scale_islands(unit_scale/properties.scale)
if properties.do_create_stickers:
self.mesh.generate_stickers(properties.sticker_width, properties.do_create_numbers)
elif properties.do_create_numbers:
self.mesh.generate_numbers_alone(properties.sticker_width)
text_height = properties.sticker_width if (properties.do_create_numbers and len(self.mesh.islands) > 1) else 0
# title height must be somewhat larger that text size, glyphs go below the baseline
self.mesh.finalize_islands(printable_size, title_height=text_height * 1.2)
self.mesh.fit_islands(printable_size)
if properties.output_type != 'NONE':
# bake an image and save it as a PNG to disk or into memory
image_packing = properties.image_packing if properties.file_format == 'SVG' else 'ISLAND_EMBED'
use_separate_images = image_packing in ('ISLAND_LINK', 'ISLAND_EMBED')
self.mesh.save_uv(cage_size=printable_size, separate_image=use_separate_images)
sce = bpy.context.scene
rd = sce.render
bk = rd.bake
recall = store_rna_properties(rd, bk, sce.cycles)
rd.engine = 'CYCLES'
for p in ('ambient_occlusion', 'color', 'diffuse', 'direct', 'emit', 'glossy', 'indirect', 'transmission'):
setattr(bk, f"use_pass_{p}", (properties.output_type != 'TEXTURE'))
lookup = {'TEXTURE': 'DIFFUSE', 'AMBIENT_OCCLUSION': 'AO', 'RENDER': 'COMBINED', 'SELECTED_TO_ACTIVE': 'COMBINED'}
sce.cycles.bake_type = lookup[properties.output_type]
bk.use_selected_to_active = (properties.output_type == 'SELECTED_TO_ACTIVE')
bk.margin, bk.cage_extrusion, bk.use_cage, bk.use_clear = 1, 10, False, False
if properties.output_type == 'TEXTURE':
bk.use_pass_direct, bk.use_pass_indirect, bk.use_pass_color = False, False, True
sce.cycles.samples = 1
else:
sce.cycles.samples = properties.bake_samples
if sce.cycles.bake_type == 'COMBINED':
bk.use_pass_direct, bk.use_pass_indirect = True, True
bk.use_pass_diffuse, bk.use_pass_glossy, bk.use_pass_transmission, bk.use_pass_ambient_occlusion, bk.use_pass_emit = True, False, False, True, True
if image_packing == 'PAGE_LINK':
self.mesh.save_image(printable_size * ppm, filepath)
elif image_packing == 'ISLAND_LINK':
image_dir = filepath[:filepath.rfind(".")]
self.mesh.save_separate_images(ppm, image_dir)
elif image_packing == 'ISLAND_EMBED':
self.mesh.save_separate_images(ppm, filepath, embed=Exporter.encode_image)
apply_rna_properties(recall, rd, bk, sce.cycles)
exporter = Exporter(properties)
exporter.write(self.mesh, filepath)
class Mesh:
"""Wrapper for Bpy Mesh"""
def __init__(self, bmesh, matrix):
self.data = bmesh
self.matrix = matrix.to_3x3()
self.looptex = bmesh.loops.layers.uv.new("Unfolded")
self.edges = {bmedge: Edge(bmedge) for bmedge in bmesh.edges}
self.islands = list()
self.pages = list()
for edge in self.edges.values():
edge.choose_main_faces()
if edge.main_faces:
edge.calculate_angle()
self.copy_freestyle_marks()
def delete_uvmap(self):
self.data.loops.layers.uv.remove(self.looptex) if self.looptex else None
def copy_freestyle_marks(self):
# NOTE: this is a workaround for NotImplementedError on bmesh.edges.layers.freestyle
mesh = bpy.data.meshes.new("unfolder_temp")
self.data.to_mesh(mesh)
for bmedge, edge in self.edges.items():
edge.freestyle = mesh.edges[bmedge.index].use_freestyle_mark
bpy.data.meshes.remove(mesh)
def mark_cuts(self):
for bmedge, edge in self.edges.items():
if edge.is_main_cut and not bmedge.is_boundary:
bmedge.seam = True
def check_correct(self, epsilon=1e-6):
"""Check for invalid geometry"""
def is_twisted(face):
if len(face.verts) <= 3:
return False
center = face.calc_center_median()
plane_d = center.dot(face.normal)
diameter = max((center - vertex.co).length for vertex in face.verts)
threshold = 0.01 * diameter
return any(abs(v.co.dot(face.normal) - plane_d) > threshold for v in face.verts)
null_edges = {e for e in self.edges.keys() if e.calc_length() < epsilon and e.link_faces}
null_faces = {f for f in self.data.faces if f.calc_area() < epsilon}
twisted_faces = {f for f in self.data.faces if is_twisted(f)}
inverted_scale = self.matrix.determinant() <= 0
if not (null_edges or null_faces or twisted_faces or inverted_scale):
return True
if inverted_scale:
raise UnfoldError(
"The object is flipped inside-out.\n"
"You can use Object -> Apply -> Scale to fix it. Export failed.")
disease = [("Remove Doubles", null_edges or null_faces), ("Triangulate", twisted_faces)]
cure = " and ".join(s for s, k in disease if k)
raise UnfoldError(
"The model contains:\n" +
(" {} zero-length edge(s)\n".format(len(null_edges)) if null_edges else "") +
(" {} zero-area face(s)\n".format(len(null_faces)) if null_faces else "") +
(" {} twisted polygon(s)\n".format(len(twisted_faces)) if twisted_faces else "") +
"The offenders are selected and you can use {} to fix them. Export failed.".format(cure),
{"verts": set(), "edges": null_edges, "faces": null_faces | twisted_faces}, self.data)
def generate_cuts(self, page_size, priority_effect):
"""Cut the mesh so that it can be unfolded to a flat net."""
normal_matrix = self.matrix.inverted().transposed()
islands = {Island(self, face, self.matrix, normal_matrix) for face in self.data.faces}
uvfaces = {face: uvface for island in islands for face, uvface in island.faces.items()}
uvedges = {loop: uvedge for island in islands for loop, uvedge in island.edges.items()}
for loop, uvedge in uvedges.items():
self.edges[loop.edge].uvedges.append(uvedge)
# check for edges that are cut permanently
edges = [edge for edge in self.edges.values() if not edge.force_cut and edge.main_faces]
if edges:
average_length = sum(edge.vector.length for edge in edges) / len(edges)
for edge in edges:
edge.generate_priority(priority_effect, average_length)
edges.sort(reverse=False, key=lambda edge: edge.priority)
for edge in edges:
if not edge.vector:
continue
edge_a, edge_b = (uvedges[l] for l in edge.main_faces)
old_island = join(edge_a, edge_b, size_limit=page_size)
if old_island:
islands.remove(old_island)
self.islands = sorted(islands, reverse=True, key=lambda island: len(island.faces))
for edge in self.edges.values():
# some edges did not know until now whether their angle is convex or concave
if edge.main_faces and (uvfaces[edge.main_faces[0].face].flipped or uvfaces[edge.main_faces[1].face].flipped):
edge.calculate_angle()
# ensure that the order of faces corresponds to the order of uvedges
if edge.main_faces:
reordered = [None, None]
for uvedge in edge.uvedges:
try:
index = edge.main_faces.index(uvedge.loop)
reordered[index] = uvedge
except ValueError:
reordered.append(uvedge)
edge.uvedges = reordered
for island in self.islands:
# if the normals are ambiguous, flip them so that there are more convex edges than concave ones
if any(uvface.flipped for uvface in island.faces.values()):
island_edges = {self.edges[uvedge.edge] for uvedge in island.edges}
balance = sum((+1 if edge.angle > 0 else -1) for edge in island_edges if not edge.is_cut(uvedge.uvface.face))
if balance < 0:
island.is_inside_out = True
# construct a linked list from each island's boundary
# uvedge.neighbor_right is clockwise = forward = via uvedge.vb if not uvface.flipped
neighbor_lookup, conflicts = dict(), dict()
for uvedge in island.boundary:
uvvertex = uvedge.va if uvedge.uvface.flipped else uvedge.vb
if uvvertex not in neighbor_lookup:
neighbor_lookup[uvvertex] = uvedge
else:
if uvvertex not in conflicts:
conflicts[uvvertex] = [neighbor_lookup[uvvertex], uvedge]
else:
conflicts[uvvertex].append(uvedge)
for uvedge in island.boundary:
uvvertex = uvedge.vb if uvedge.uvface.flipped else uvedge.va
if uvvertex not in conflicts:
# using the 'get' method so as to handle single-connected vertices properly
uvedge.neighbor_right = neighbor_lookup.get(uvvertex, uvedge)
uvedge.neighbor_right.neighbor_left = uvedge
else:
conflicts[uvvertex].append(uvedge)
# resolve merged vertices with more boundaries crossing
def direction_to_float(vector):
return (1 - vector.x/vector.length) if vector.y > 0 else (vector.x/vector.length - 1)
for uvvertex, uvedges in conflicts.items():
def is_inwards(uvedge):
return uvedge.uvface.flipped == (uvedge.va is uvvertex)
def uvedge_sortkey(uvedge):
if is_inwards(uvedge):
return direction_to_float(uvedge.va.co - uvedge.vb.co)
else:
return direction_to_float(uvedge.vb.co - uvedge.va.co)
uvedges.sort(key=uvedge_sortkey)
for right, left in (
zip(uvedges[:-1:2], uvedges[1::2]) if is_inwards(uvedges[0])
else zip([uvedges[-1]] + uvedges[1::2], uvedges[:-1:2])):
left.neighbor_right = right
right.neighbor_left = left
return True
def generate_stickers(self, default_width, do_create_numbers=True):
"""Add sticker faces where they are needed."""
def uvedge_priority(uvedge):
"""Returns whether it is a good idea to stick something on this edge's face"""
# TODO: it should take into account overlaps with faces and with other stickers
face = uvedge.uvface.face
return face.calc_area() / face.calc_perimeter()
def add_sticker(uvedge, index, target_uvedge):
uvedge.sticker = Sticker(uvedge, default_width, index, target_uvedge)
uvedge.uvface.island.add_marker(uvedge.sticker)
def is_index_obvious(uvedge, target):
if uvedge in (target.neighbor_left, target.neighbor_right):
return True
if uvedge.neighbor_left.loop.edge is target.neighbor_right.loop.edge and uvedge.neighbor_right.loop.edge is target.neighbor_left.loop.edge:
return True
return False
for edge in self.edges.values():
index = None
if edge.is_main_cut and len(edge.uvedges) >= 2 and edge.vector.length_squared > 0:
target, source = edge.uvedges[:2]
if uvedge_priority(target) < uvedge_priority(source):
target, source = source, target
target_island = target.uvface.island
if do_create_numbers:
for uvedge in [source] + edge.uvedges[2:]:
if not is_index_obvious(uvedge, target):
# it will not be clear to see that these uvedges should be sticked together
# So, create an arrow and put the index on all stickers
target_island.sticker_numbering += 1
index = str(target_island.sticker_numbering)
if is_upsidedown_wrong(index):
index += "."
target_island.add_marker(Arrow(target, default_width, index))
break
add_sticker(source, index, target)
elif len(edge.uvedges) > 2:
target = edge.uvedges[0]
if len(edge.uvedges) > 2:
for source in edge.uvedges[2:]:
add_sticker(source, index, target)
def generate_numbers_alone(self, size):
global_numbering = 0
for edge in self.edges.values():
if edge.is_main_cut and len(edge.uvedges) >= 2:
global_numbering += 1
index = str(global_numbering)
if is_upsidedown_wrong(index):
index += "."
for uvedge in edge.uvedges:
uvedge.uvface.island.add_marker(NumberAlone(uvedge, index, size))
def enumerate_islands(self):
for num, island in enumerate(self.islands, 1):
island.number = num
island.generate_label()
def scale_islands(self, scale):
for island in self.islands:
vertices = set(island.vertices.values())
for point in chain((vertex.co for vertex in vertices), island.fake_vertices):
point *= scale
def finalize_islands(self, cage_size, title_height=0):
for island in self.islands:
if title_height:
island.title = "[{}] {}".format(island.abbreviation, island.label)
points = [vertex.co for vertex in set(island.vertices.values())] + island.fake_vertices
angle, _ = cage_fit(points, (cage_size.y - title_height) / cage_size.x)
rot = M.Matrix.Rotation(angle, 2)
for point in points:
point.rotate(rot)
for marker in island.markers:
marker.rot = rot @ marker.rot
bottom_left = M.Vector((min(v.x for v in points), min(v.y for v in points) - title_height))
# DEBUG
# top_right = M.Vector((max(v.x for v in points), max(v.y for v in points) - title_height))
# print(f"fitted aspect: {(top_right.y - bottom_left.y) / (top_right.x - bottom_left.x)}")
for point in points:
point -= bottom_left
island.bounding_box = M.Vector((max(v.x for v in points), max(v.y for v in points)))
def largest_island_ratio(self, cage_size):
return max(i / p for island in self.islands for (i, p) in zip(island.bounding_box, cage_size))
def fit_islands(self, cage_size):
"""Move islands so that they fit onto pages, based on their bounding boxes"""
def try_emplace(island, page_islands, stops_x, stops_y, occupied_cache):
"""Tries to put island to each pair from stops_x, stops_y
and checks if it overlaps with any islands present on the page.
Returns True and positions the given island on success."""
bbox_x, bbox_y = island.bounding_box.xy
for x in stops_x:
if x + bbox_x > cage_size.x:
continue
for y in stops_y:
if y + bbox_y > cage_size.y or (x, y) in occupied_cache:
continue
for i, obstacle in enumerate(page_islands):
# if this obstacle overlaps with the island, try another stop
if (x + bbox_x > obstacle.pos.x and
obstacle.pos.x + obstacle.bounding_box.x > x and
y + bbox_y > obstacle.pos.y and
obstacle.pos.y + obstacle.bounding_box.y > y):
if x >= obstacle.pos.x and y >= obstacle.pos.y:
occupied_cache.add((x, y))
# just a stupid heuristic to make subsequent searches faster
if i > 0:
page_islands[1:i+1] = page_islands[:i]
page_islands[0] = obstacle
break
else:
# if no obstacle called break, this position is okay
island.pos.xy = x, y
page_islands.append(island)
stops_x.append(x + bbox_x)
stops_y.append(y + bbox_y)
return True
return False
def drop_portion(stops, border, divisor):
stops.sort()
# distance from left neighbor to the right one, excluding the first stop
distances = [right - left for left, right in zip(stops, chain(stops[2:], [border]))]
quantile = sorted(distances)[len(distances) // divisor]
return [stop for stop, distance in zip(stops, chain([quantile], distances)) if distance >= quantile]
if any(island.bounding_box.x > cage_size.x or island.bounding_box.y > cage_size.y for island in self.islands):
raise UnfoldError(
"An island is too big to fit onto page of the given size. "
"Either downscale the model or find and split that island manually.\n"
"Export failed, sorry.")
# sort islands by their diagonal... just a guess
remaining_islands = sorted(self.islands, reverse=True, key=lambda island: island.bounding_box.length_squared)
page_num = 1 # TODO delete me
while remaining_islands:
# create a new page and try to fit as many islands onto it as possible
page = Page(page_num)
page_num += 1
occupied_cache = set()
stops_x, stops_y = [0], [0]
for island in remaining_islands:
try_emplace(island, page.islands, stops_x, stops_y, occupied_cache)
# if overwhelmed with stops, drop a quarter of them
if len(stops_x)**2 > 4 * len(self.islands) + 100:
stops_x = drop_portion(stops_x, cage_size.x, 4)
stops_y = drop_portion(stops_y, cage_size.y, 4)
remaining_islands = [island for island in remaining_islands if island not in page.islands]
self.pages.append(page)
def save_uv(self, cage_size=M.Vector((1, 1)), separate_image=False):
if separate_image:
for island in self.islands:
island.save_uv_separate(self.looptex)
else:
for island in self.islands:
island.save_uv(self.looptex, cage_size)
def save_image(self, page_size_pixels: M.Vector, filename):
for page in self.pages:
image = create_blank_image("Page {}".format(page.name), page_size_pixels, alpha=1)
image.filepath_raw = page.image_path = "{}_{}.png".format(filename, page.name)
faces = [face for island in page.islands for face in island.faces]
self.bake(faces, image)
image.save()
image.user_clear()
bpy.data.images.remove(image)
def save_separate_images(self, scale, filepath, embed=None):
for i, island in enumerate(self.islands):
image_name = "Island {}".format(i)
image = create_blank_image(image_name, island.bounding_box * scale, alpha=0)
self.bake(island.faces.keys(), image)
if embed:
island.embedded_image = embed(image)
else:
from os import makedirs
image_dir = filepath
makedirs(image_dir, exist_ok=True)
image_path = os_path.join(image_dir, "island{}.png".format(i))
image.filepath_raw = image_path
image.save()
island.image_path = image_path
image.user_clear()
bpy.data.images.remove(image)
def bake(self, faces, image):
if not self.looptex:
raise UnfoldError("The mesh has no UV Map slots left. Either delete a UV Map or export the net without textures.")
ob = bpy.context.active_object
me = ob.data
# in Cycles, the image for baking is defined by the active Image Node
temp_nodes = dict()
for mat in me.materials:
mat.use_nodes = True
img = mat.node_tree.nodes.new('ShaderNodeTexImage')
img.image = image
temp_nodes[mat] = img
mat.node_tree.nodes.active = img
# move all excess faces to negative numbers (that is the only way to disable them)
ignored_uvs = [loop[self.looptex].uv for f in self.data.faces if f not in faces for loop in f.loops]
for uv in ignored_uvs:
uv *= -1
bake_type = bpy.context.scene.cycles.bake_type
sta = bpy.context.scene.render.bake.use_selected_to_active
try:
ob.update_from_editmode()
me.uv_layers.active = me.uv_layers[self.looptex.name]
bpy.ops.object.bake(type=bake_type, margin=1, use_selected_to_active=sta, cage_extrusion=100, use_clear=False)
except RuntimeError as e:
raise UnfoldError(*e.args)
finally:
for mat, node in temp_nodes.items():
mat.node_tree.nodes.remove(node)
for uv in ignored_uvs:
uv *= -1
class Edge:
"""Wrapper for BPy Edge"""
__slots__ = (
'data', 'va', 'vb', 'main_faces', 'uvedges',
'vector', 'angle',
'is_main_cut', 'force_cut', 'priority', 'freestyle')
def __init__(self, edge):
self.data = edge
self.va, self.vb = edge.verts
self.vector = self.vb.co - self.va.co
# if self.main_faces is set, then self.uvedges[:2] must correspond to self.main_faces, in their order
# this constraint is assured at the time of finishing mesh.generate_cuts
self.uvedges = list()
self.force_cut = edge.seam # such edges will always be cut
self.main_faces = None # two faces that may be connected in the island
# is_main_cut defines whether the two main faces are connected
# all the others will be assumed to be cut
self.is_main_cut = True
self.priority = None
self.angle = None
self.freestyle = False
def choose_main_faces(self):
"""Choose two main faces that might get connected in an island"""
def score(pair):
return abs(pair[0].face.normal.dot(pair[1].face.normal))
loops = self.data.link_loops
if len(loops) == 2:
self.main_faces = list(loops)
elif len(loops) > 2:
# find (with brute force) the pair of indices whose loops have the most similar normals
self.main_faces = max(combinations(loops, 2), key=score)
if self.main_faces and self.main_faces[1].vert == self.va:
self.main_faces = self.main_faces[::-1]
def calculate_angle(self):
"""Calculate the angle between the main faces"""
loop_a, loop_b = self.main_faces
normal_a, normal_b = (l.face.normal for l in self.main_faces)
if not normal_a or not normal_b:
self.angle = -3 # just a very sharp angle
else:
s = normal_a.cross(normal_b).dot(self.vector.normalized())
s = max(min(s, 1.0), -1.0) # deal with rounding errors
self.angle = asin(s)
if loop_a.link_loop_next.vert != loop_b.vert or loop_b.link_loop_next.vert != loop_a.vert:
self.angle = abs(self.angle)
def generate_priority(self, priority_effect, average_length):
"""Calculate the priority value for cutting"""
angle = self.angle
if angle > 0:
self.priority = priority_effect['CONVEX'] * angle / pi
else:
self.priority = priority_effect['CONCAVE'] * (-angle) / pi
self.priority += (self.vector.length / average_length) * priority_effect['LENGTH']
def is_cut(self, face):
"""Return False if this edge will the given face to another one in the resulting net
(useful for edges with more than two faces connected)"""
# Return whether there is a cut between the two main faces
if self.main_faces and face in {loop.face for loop in self.main_faces}:
return self.is_main_cut
# All other faces (third and more) are automatically treated as cut
else:
return True
def other_uvedge(self, this):
"""Get an uvedge of this edge that is not the given one
causes an IndexError if case of less than two adjacent edges"""
return self.uvedges[1] if this is self.uvedges[0] else self.uvedges[0]
class Island:
"""Part of the net to be exported"""
__slots__ = (
'mesh', 'faces', 'edges', 'vertices', 'fake_vertices', 'boundary', 'markers',
'pos', 'bounding_box',
'image_path', 'embedded_image',
'number', 'label', 'abbreviation', 'title',
'has_safe_geometry', 'is_inside_out',
'sticker_numbering')
def __init__(self, mesh, face, matrix, normal_matrix):
"""Create an Island from a single Face"""
self.mesh = mesh
self.faces = dict() # face -> uvface
self.edges = dict() # loop -> uvedge
self.vertices = dict() # loop -> uvvertex
self.fake_vertices = list()
self.markers = list()
self.label = None
self.abbreviation = None
self.title = None
self.pos = M.Vector((0, 0))
self.image_path = None
self.embedded_image = None
self.is_inside_out = False # swaps concave <-> convex edges
self.has_safe_geometry = True
self.sticker_numbering = 0
uvface = UVFace(face, self, matrix, normal_matrix)
self.vertices.update(uvface.vertices)
self.edges.update(uvface.edges)
self.faces[face] = uvface
# UVEdges on the boundary
self.boundary = list(self.edges.values())
def add_marker(self, marker):
self.fake_vertices.extend(marker.bounds)
self.markers.append(marker)
def generate_label(self, label=None, abbreviation=None):
"""Assign a name to this island automatically"""
abbr = abbreviation or self.abbreviation or str(self.number)
# TODO: dots should be added in the last instant when outputting any text
if is_upsidedown_wrong(abbr):
abbr += "."
self.label = label or self.label or "Island {}".format(self.number)
self.abbreviation = abbr
def save_uv(self, tex, cage_size):
"""Save UV Coordinates of all UVFaces to a given UV texture
tex: UV Texture layer to use (BMLayerItem)
page_size: size of the page in pixels (vector)"""
scale_x, scale_y = 1 / cage_size.x, 1 / cage_size.y
for loop, uvvertex in self.vertices.items():
uv = uvvertex.co + self.pos
loop[tex].uv = uv.x * scale_x, uv.y * scale_y
def save_uv_separate(self, tex):
"""Save UV Coordinates of all UVFaces to a given UV texture, spanning from 0 to 1
tex: UV Texture layer to use (BMLayerItem)
page_size: size of the page in pixels (vector)"""
scale_x, scale_y = 1 / self.bounding_box.x, 1 / self.bounding_box.y
for loop, uvvertex in self.vertices.items():
loop[tex].uv = uvvertex.co.x * scale_x, uvvertex.co.y * scale_y
def join(uvedge_a, uvedge_b, size_limit=None, epsilon=1e-6):
"""
Try to join other island on given edge
Returns False if they would overlap
"""
class Intersection(Exception):
pass
class GeometryError(Exception):
pass
def is_below(self, other, correct_geometry=True):
if self is other:
return False
if self.top < other.bottom:
return True
if other.top < self.bottom:
return False
if self.max.tup <= other.min.tup:
return True
if other.max.tup <= self.min.tup:
return False
self_vector = self.max.co - self.min.co
min_to_min = other.min.co - self.min.co
cross_b1 = self_vector.cross(min_to_min)
cross_b2 = self_vector.cross(other.max.co - self.min.co)
if cross_b2 < cross_b1:
cross_b1, cross_b2 = cross_b2, cross_b1
if cross_b2 > 0 and (cross_b1 > 0 or (cross_b1 == 0 and not self.is_uvface_upwards())):
return True
if cross_b1 < 0 and (cross_b2 < 0 or (cross_b2 == 0 and self.is_uvface_upwards())):
return False
other_vector = other.max.co - other.min.co
cross_a1 = other_vector.cross(-min_to_min)
cross_a2 = other_vector.cross(self.max.co - other.min.co)
if cross_a2 < cross_a1:
cross_a1, cross_a2 = cross_a2, cross_a1
if cross_a2 > 0 and (cross_a1 > 0 or (cross_a1 == 0 and not other.is_uvface_upwards())):
return False
if cross_a1 < 0 and (cross_a2 < 0 or (cross_a2 == 0 and other.is_uvface_upwards())):
return True
if cross_a1 == cross_b1 == cross_a2 == cross_b2 == 0:
if correct_geometry:
raise GeometryError
elif self.is_uvface_upwards() == other.is_uvface_upwards():
raise Intersection
return False
if self.min.tup == other.min.tup or self.max.tup == other.max.tup:
return cross_a2 > cross_b2
raise Intersection
class QuickSweepline:
"""Efficient sweepline based on binary search, checking neighbors only"""
def __init__(self):
self.children = list()
def add(self, item, cmp=is_below):
low, high = 0, len(self.children)
while low < high:
mid = (low + high) // 2
if cmp(self.children[mid], item):
low = mid + 1
else:
high = mid
self.children.insert(low, item)
def remove(self, item, cmp=is_below):
index = self.children.index(item)
self.children.pop(index)
if index > 0 and index < len(self.children):
# check for intersection
if cmp(self.children[index], self.children[index-1]):
raise GeometryError
class BruteSweepline:
"""Safe sweepline which checks all its members pairwise"""
def __init__(self):
self.children = set()
def add(self, item, cmp=is_below):
for child in self.children:
if child.min is not item.min and child.max is not item.max:
cmp(item, child, False)
self.children.add(item)
def remove(self, item):
self.children.remove(item)
def sweep(sweepline, segments):
"""Sweep across the segments and raise an exception if necessary"""
# careful, 'segments' may be a use-once iterator
events_add = sorted(segments, reverse=True, key=lambda uvedge: uvedge.min.tup)
events_remove = sorted(events_add, reverse=True, key=lambda uvedge: uvedge.max.tup)
while events_remove:
while events_add and events_add[-1].min.tup <= events_remove[-1].max.tup:
sweepline.add(events_add.pop())
sweepline.remove(events_remove.pop())
def root_find(value, tree):
"""Find the root of a given value in a forest-like dictionary
also updates the dictionary using path compression"""
parent, relink = tree.get(value), list()
while parent is not None:
relink.append(value)
value, parent = parent, tree.get(parent)
tree.update(dict.fromkeys(relink, value))
return value
def slope_from(position):
def slope(uvedge):
vec = (uvedge.vb.co - uvedge.va.co) if uvedge.va.tup == position else (uvedge.va.co - uvedge.vb.co)
return (vec.y / vec.length + 1) if ((vec.x, vec.y) > (0, 0)) else (-1 - vec.y / vec.length)
return slope
island_a, island_b = (e.uvface.island for e in (uvedge_a, uvedge_b))
if island_a is island_b:
return False
elif len(island_b.faces) > len(island_a.faces):
uvedge_a, uvedge_b = uvedge_b, uvedge_a
island_a, island_b = island_b, island_a
# check if vertices and normals are aligned correctly
verts_flipped = uvedge_b.loop.vert is uvedge_a.loop.vert
flipped = verts_flipped ^ uvedge_a.uvface.flipped ^ uvedge_b.uvface.flipped
# determine rotation
# NOTE: if the edges differ in length, the matrix will involve uniform scaling.
# Such situation may occur in the case of twisted n-gons
first_b, second_b = (uvedge_b.va, uvedge_b.vb) if not verts_flipped else (uvedge_b.vb, uvedge_b.va)
if not flipped:
rot = fitting_matrix(first_b.co - second_b.co, uvedge_a.vb.co - uvedge_a.va.co)
else:
flip = M.Matrix(((-1, 0), (0, 1)))
rot = fitting_matrix(flip @ (first_b.co - second_b.co), uvedge_a.vb.co - uvedge_a.va.co) @ flip
trans = uvedge_a.vb.co - rot @ first_b.co
# preview of island_b's vertices after the join operation
phantoms = {uvvertex: UVVertex(rot @ uvvertex.co + trans) for uvvertex in island_b.vertices.values()}
# check the size of the resulting island
if size_limit:
points = [vert.co for vert in chain(island_a.vertices.values(), phantoms.values())]
left, right, bottom, top = (fn(co[i] for co in points) for i in (0, 1) for fn in (min, max))
bbox_width = right - left
bbox_height = top - bottom
if min(bbox_width, bbox_height)**2 > size_limit.x**2 + size_limit.y**2:
return False
if (bbox_width > size_limit.x or bbox_height > size_limit.y) and (bbox_height > size_limit.x or bbox_width > size_limit.y):
_, height = cage_fit(points, size_limit.y / size_limit.x)
if height > size_limit.y:
return False
distance_limit = uvedge_a.loop.edge.calc_length() * epsilon
# try and merge UVVertices closer than sqrt(distance_limit)
merged_uvedges = set()
merged_uvedge_pairs = list()
# merge all uvvertices that are close enough using a union-find structure
# uvvertices will be merged only in cases island_b->island_a and island_a->island_a
# all resulting groups are merged together to a uvvertex of island_a
is_merged_mine = False
shared_vertices = {loop.vert for loop in chain(island_a.vertices, island_b.vertices)}
for vertex in shared_vertices:
uvs_a = {island_a.vertices.get(loop) for loop in vertex.link_loops} - {None}
uvs_b = {island_b.vertices.get(loop) for loop in vertex.link_loops} - {None}
for a, b in product(uvs_a, uvs_b):
if (a.co - phantoms[b].co).length_squared < distance_limit:
phantoms[b] = root_find(a, phantoms)
for a1, a2 in combinations(uvs_a, 2):
if (a1.co - a2.co).length_squared < distance_limit:
a1, a2 = (root_find(a, phantoms) for a in (a1, a2))
if a1 is not a2:
phantoms[a2] = a1
is_merged_mine = True
for source, target in phantoms.items():
target = root_find(target, phantoms)
phantoms[source] = target
for uvedge in (chain(island_a.boundary, island_b.boundary) if is_merged_mine else island_b.boundary):
for loop in uvedge.loop.link_loops:
partner = island_b.edges.get(loop) or island_a.edges.get(loop)
if partner is not None and partner is not uvedge:
paired_a, paired_b = phantoms.get(partner.vb, partner.vb), phantoms.get(partner.va, partner.va)
if (partner.uvface.flipped ^ flipped) != uvedge.uvface.flipped:
paired_a, paired_b = paired_b, paired_a
if phantoms.get(uvedge.va, uvedge.va) is paired_a and phantoms.get(uvedge.vb, uvedge.vb) is paired_b:
# if these two edges will get merged, add them both to the set
merged_uvedges.update((uvedge, partner))
merged_uvedge_pairs.append((uvedge, partner))
break
if uvedge_b not in merged_uvedges:
raise UnfoldError("Export failed. Please report this error, including the model if you can.")
boundary_other = [
PhantomUVEdge(phantoms[uvedge.va], phantoms[uvedge.vb], flipped ^ uvedge.uvface.flipped)
for uvedge in island_b.boundary if uvedge not in merged_uvedges]
# TODO: if is_merged_mine, it might make sense to create a similar list from island_a.boundary as well
incidence = {vertex.tup for vertex in phantoms.values()}.intersection(vertex.tup for vertex in island_a.vertices.values())
incidence = {position: list() for position in incidence} # from now on, 'incidence' is a dict
for uvedge in chain(boundary_other, island_a.boundary):
if uvedge.va.co == uvedge.vb.co:
continue
for vertex in (uvedge.va, uvedge.vb):
site = incidence.get(vertex.tup)
if site is not None:
site.append(uvedge)
for position, segments in incidence.items():
if len(segments) <= 2:
continue
segments.sort(key=slope_from(position))
for right, left in pairs(segments):
is_left_ccw = left.is_uvface_upwards() ^ (left.max.tup == position)
is_right_ccw = right.is_uvface_upwards() ^ (right.max.tup == position)
if is_right_ccw and not is_left_ccw and type(right) is not type(left) and right not in merged_uvedges and left not in merged_uvedges:
return False
if (not is_right_ccw and right not in merged_uvedges) ^ (is_left_ccw and left not in merged_uvedges):
return False
# check for self-intersections
try:
try:
sweepline = QuickSweepline() if island_a.has_safe_geometry and island_b.has_safe_geometry else BruteSweepline()
sweep(sweepline, (uvedge for uvedge in chain(boundary_other, island_a.boundary)))
island_a.has_safe_geometry &= island_b.has_safe_geometry
except GeometryError:
sweep(BruteSweepline(), (uvedge for uvedge in chain(boundary_other, island_a.boundary)))
island_a.has_safe_geometry = False
except Intersection:
return False
# mark all edges that connect the islands as not cut
for uvedge in merged_uvedges:
island_a.mesh.edges[uvedge.loop.edge].is_main_cut = False
# include all trasformed vertices as mine
island_a.vertices.update({loop: phantoms[uvvertex] for loop, uvvertex in island_b.vertices.items()})
# re-link uvedges and uvfaces to their transformed locations
for uvedge in island_b.edges.values():
uvedge.va = phantoms[uvedge.va]
uvedge.vb = phantoms[uvedge.vb]
uvedge.update()
if is_merged_mine:
for uvedge in island_a.edges.values():
uvedge.va = phantoms.get(uvedge.va, uvedge.va)
uvedge.vb = phantoms.get(uvedge.vb, uvedge.vb)
island_a.edges.update(island_b.edges)
for uvface in island_b.faces.values():
uvface.island = island_a
uvface.vertices = {loop: phantoms[uvvertex] for loop, uvvertex in uvface.vertices.items()}
uvface.flipped ^= flipped
if is_merged_mine:
# there may be own uvvertices that need to be replaced by phantoms
for uvface in island_a.faces.values():
if any(uvvertex in phantoms for uvvertex in uvface.vertices):
uvface.vertices = {loop: phantoms.get(uvvertex, uvvertex) for loop, uvvertex in uvface.vertices.items()}
island_a.faces.update(island_b.faces)
island_a.boundary = [
uvedge for uvedge in chain(island_a.boundary, island_b.boundary)
if uvedge not in merged_uvedges]
for uvedge, partner in merged_uvedge_pairs:
# make sure that main faces are the ones actually merged (this changes nothing in most cases)
edge = island_a.mesh.edges[uvedge.loop.edge]
edge.main_faces = uvedge.loop, partner.loop
# everything seems to be OK
return island_b
class Page:
"""Container for several Islands"""
__slots__ = ('islands', 'name', 'image_path')
def __init__(self, num=1):
self.islands = list()
self.name = "page{}".format(num) # note: this is only used in svg files naming
self.image_path = None
class UVVertex:
"""Vertex in 2D"""
__slots__ = ('co', 'tup')
def __init__(self, vector):
self.co = vector.xy
self.tup = tuple(self.co)
class UVEdge:
"""Edge in 2D"""
# Every UVEdge is attached to only one UVFace
# UVEdges are doubled as needed because they both have to point clockwise around their faces
__slots__ = (
'va', 'vb', 'uvface', 'loop',
'min', 'max', 'bottom', 'top',
'neighbor_left', 'neighbor_right', 'sticker')
def __init__(self, vertex1: UVVertex, vertex2: UVVertex, uvface, loop):
self.va = vertex1
self.vb = vertex2
self.update()
self.uvface = uvface
self.sticker = None
self.loop = loop
def update(self):
"""Update data if UVVertices have moved"""
self.min, self.max = (self.va, self.vb) if (self.va.tup < self.vb.tup) else (self.vb, self.va)
y1, y2 = self.va.co.y, self.vb.co.y
self.bottom, self.top = (y1, y2) if y1 < y2 else (y2, y1)
def is_uvface_upwards(self):
return (self.va.tup < self.vb.tup) ^ self.uvface.flipped
def __repr__(self):
return "({0.va} - {0.vb})".format(self)
class PhantomUVEdge:
"""Temporary 2D Segment for calculations"""
__slots__ = ('va', 'vb', 'min', 'max', 'bottom', 'top')
def __init__(self, vertex1: UVVertex, vertex2: UVVertex, flip):
self.va, self.vb = (vertex2, vertex1) if flip else (vertex1, vertex2)
self.min, self.max = (self.va, self.vb) if (self.va.tup < self.vb.tup) else (self.vb, self.va)
y1, y2 = self.va.co.y, self.vb.co.y
self.bottom, self.top = (y1, y2) if y1 < y2 else (y2, y1)
def is_uvface_upwards(self):
return self.va.tup < self.vb.tup
def __repr__(self):
return "[{0.va} - {0.vb}]".format(self)
class UVFace:
"""Face in 2D"""
__slots__ = ('vertices', 'edges', 'face', 'island', 'flipped')
def __init__(self, face: bmesh.types.BMFace, island: Island, matrix=1, normal_matrix=1):
self.face = face
self.island = island
self.flipped = False # a flipped UVFace has edges clockwise
flatten = z_up_matrix(normal_matrix @ face.normal) @ matrix
self.vertices = {loop: UVVertex(flatten @ loop.vert.co) for loop in face.loops}
self.edges = {loop: UVEdge(self.vertices[loop], self.vertices[loop.link_loop_next], self, loop) for loop in face.loops}
class Arrow:
"""Mark in the document: an arrow denoting the number of the edge it points to"""
__slots__ = ('bounds', 'center', 'rot', 'text', 'size')
def __init__(self, uvedge, size, index):
self.text = str(index)
edge = (uvedge.vb.co - uvedge.va.co) if not uvedge.uvface.flipped else (uvedge.va.co - uvedge.vb.co)
self.center = (uvedge.va.co + uvedge.vb.co) / 2
self.size = size
tangent = edge.normalized()
cos, sin = tangent
self.rot = M.Matrix(((cos, -sin), (sin, cos)))
normal = M.Vector((sin, -cos))
self.bounds = [self.center, self.center + (1.2 * normal + tangent) * size, self.center + (1.2 * normal - tangent) * size]
class Sticker:
"""Mark in the document: sticker tab"""
__slots__ = ('bounds', 'center', 'points', 'rot', 'text', 'width')
def __init__(self, uvedge, default_width, index, other: UVEdge):
"""Sticker is directly attached to the given UVEdge"""
first_vertex, second_vertex = (uvedge.va, uvedge.vb) if not uvedge.uvface.flipped else (uvedge.vb, uvedge.va)
edge = first_vertex.co - second_vertex.co
sticker_width = min(default_width, edge.length / 2)
other_first, other_second = (other.va, other.vb) if not other.uvface.flipped else (other.vb, other.va)
other_edge = other_second.co - other_first.co
# angle a is at vertex uvedge.va, b is at uvedge.vb
cos_a = cos_b = 0.5
sin_a = sin_b = 0.75**0.5
# len_a is length of the side adjacent to vertex a, len_b likewise
len_a = len_b = sticker_width / sin_a
# fix overlaps with the most often neighbour - its sticking target
if first_vertex == other_second:
cos_a = max(cos_a, edge.dot(other_edge) / (edge.length_squared)) # angles between pi/3 and 0
elif second_vertex == other_first:
cos_b = max(cos_b, edge.dot(other_edge) / (edge.length_squared)) # angles between pi/3 and 0
# Fix tabs for sticking targets with small angles
try:
other_face_neighbor_left = other.neighbor_left
other_face_neighbor_right = other.neighbor_right
other_edge_neighbor_a = other_face_neighbor_left.vb.co - other.vb.co
other_edge_neighbor_b = other_face_neighbor_right.va.co - other.va.co
# Adjacent angles in the face
cos_a = max(cos_a, -other_edge.dot(other_edge_neighbor_a) / (other_edge.length*other_edge_neighbor_a.length))
cos_b = max(cos_b, other_edge.dot(other_edge_neighbor_b) / (other_edge.length*other_edge_neighbor_b.length))
except AttributeError: # neighbor data may be missing for edges with 3+ faces
pass
except ZeroDivisionError:
pass
# Calculate the lengths of the glue tab edges using the possibly smaller angles
sin_a = abs(1 - cos_a**2)**0.5
len_b = min(len_a, (edge.length * sin_a) / (sin_a * cos_b + sin_b * cos_a))
len_a = 0 if sin_a == 0 else min(sticker_width / sin_a, (edge.length - len_b*cos_b) / cos_a)
sin_b = abs(1 - cos_b**2)**0.5
len_a = min(len_a, (edge.length * sin_b) / (sin_a * cos_b + sin_b * cos_a))
len_b = 0 if sin_b == 0 else min(sticker_width / sin_b, (edge.length - len_a * cos_a) / cos_b)
v3 = second_vertex.co + M.Matrix(((cos_b, -sin_b), (sin_b, cos_b))) @ edge * len_b / edge.length
v4 = first_vertex.co + M.Matrix(((-cos_a, -sin_a), (sin_a, -cos_a))) @ edge * len_a / edge.length
if v3 != v4:
self.points = [second_vertex.co, v3, v4, first_vertex.co]
else:
self.points = [second_vertex.co, v3, first_vertex.co]
sin, cos = edge.y / edge.length, edge.x / edge.length
self.rot = M.Matrix(((cos, -sin), (sin, cos)))
self.width = sticker_width * 0.9
if index and uvedge.uvface.island is not other.uvface.island:
self.text = "{}:{}".format(other.uvface.island.abbreviation, index)
else:
self.text = index
self.center = (uvedge.va.co + uvedge.vb.co) / 2 + self.rot @ M.Vector((0, self.width * 0.2))
self.bounds = [v3, v4, self.center] if v3 != v4 else [v3, self.center]
class NumberAlone:
"""Mark in the document: numbering inside the island denoting edges to be sticked"""
__slots__ = ('bounds', 'center', 'rot', 'text', 'size')
def __init__(self, uvedge, index, default_size=0.005):
"""Sticker is directly attached to the given UVEdge"""
edge = (uvedge.va.co - uvedge.vb.co) if not uvedge.uvface.flipped else (uvedge.vb.co - uvedge.va.co)
self.size = default_size
sin, cos = edge.y / edge.length, edge.x / edge.length
self.rot = M.Matrix(((cos, -sin), (sin, cos)))
self.text = index
self.center = (uvedge.va.co + uvedge.vb.co) / 2 - self.rot @ M.Vector((0, self.size * 1.2))
self.bounds = [self.center]
def init_exporter(self, properties):
self.page_size = M.Vector((properties.output_size_x, properties.output_size_y))
self.style = properties.style
margin = properties.output_margin
self.margin = M.Vector((margin, margin))
self.pure_net = (properties.output_type == 'NONE')
self.do_create_stickers = properties.do_create_stickers
self.text_size = properties.sticker_width
self.angle_epsilon = properties.angle_epsilon
class Svg:
"""Simple SVG exporter"""
def __init__(self, properties):
init_exporter(self, properties)
@classmethod
def encode_image(cls, bpy_image):
import tempfile
import base64
with tempfile.TemporaryDirectory() as directory:
filename = directory + "/i.png"
bpy_image.filepath_raw = filename
bpy_image.save()
return base64.encodebytes(open(filename, "rb").read()).decode('ascii')
def format_vertex(self, vector):
"""Return a string with both coordinates of the given vertex."""
return "{:.6f} {:.6f}".format((vector.x + self.margin.x) * 1000, (self.page_size.y - vector.y - self.margin.y) * 1000)
def write(self, mesh, filename):
"""Write data to a file given by its name."""
line_through = " L ".join # used for formatting of SVG path data
rows = "\n".join
dl = ["{:.2f}".format(length * self.style.line_width * 1000) for length in (2, 5, 10)]
format_style = {
'SOLID': "none", 'DOT': "{0},{1}".format(*dl), 'DASH': "{1},{2}".format(*dl),
'LONGDASH': "{2},{1}".format(*dl), 'DASHDOT': "{2},{1},{0},{1}".format(*dl)}
def format_color(vec):
return "#{:02x}{:02x}{:02x}".format(round(vec[0] * 255), round(vec[1] * 255), round(vec[2] * 255))
def format_matrix(matrix):
return " ".join("{:.6f}".format(cell) for column in matrix for cell in column)
def path_convert(string, relto=os_path.dirname(filename)):
assert(os_path) # check the module was imported
string = os_path.relpath(string, relto)
if os_path.sep != '/':
string = string.replace(os_path.sep, '/')
return string
styleargs = {
name: format_color(getattr(self.style, name)) for name in (
"outer_color", "outbg_color", "convex_color", "concave_color", "freestyle_color",
"inbg_color", "sticker_color", "text_color")}
styleargs.update({
name: format_style[getattr(self.style, name)] for name in
("outer_style", "convex_style", "concave_style", "freestyle_style")})
styleargs.update({
name: getattr(self.style, attr)[3] for name, attr in (
("outer_alpha", "outer_color"), ("outbg_alpha", "outbg_color"),
("convex_alpha", "convex_color"), ("concave_alpha", "concave_color"),
("freestyle_alpha", "freestyle_color"),
("inbg_alpha", "inbg_color"), ("sticker_alpha", "sticker_color"),
("text_alpha", "text_color"))})
styleargs.update({
name: getattr(self.style, name) * self.style.line_width * 1000 for name in
("outer_width", "convex_width", "concave_width", "freestyle_width", "outbg_width", "inbg_width")})
for num, page in enumerate(mesh.pages):
page_filename = "{}_{}.svg".format(filename[:filename.rfind(".svg")], page.name) if len(mesh.pages) > 1 else filename
with open(page_filename, 'w') as f:
print(self.svg_base.format(width=self.page_size.x*1000, height=self.page_size.y*1000), file=f)
print(self.css_base.format(**styleargs), file=f)
if page.image_path:
print(
self.image_linked_tag.format(
pos="{0:.6f} {0:.6f}".format(self.margin.x*1000),
width=(self.page_size.x - 2 * self.margin.x)*1000,
height=(self.page_size.y - 2 * self.margin.y)*1000,
path=path_convert(page.image_path)),
file=f)
if len(page.islands) > 1:
print("<g>", file=f)
for island in page.islands:
print("<g>", file=f)
if island.image_path:
print(
self.image_linked_tag.format(
pos=self.format_vertex(island.pos + M.Vector((0, island.bounding_box.y))),
width=island.bounding_box.x*1000,
height=island.bounding_box.y*1000,
path=path_convert(island.image_path)),
file=f)
elif island.embedded_image:
print(
self.image_embedded_tag.format(
pos=self.format_vertex(island.pos + M.Vector((0, island.bounding_box.y))),
width=island.bounding_box.x*1000,
height=island.bounding_box.y*1000,
path=island.image_path),
island.embedded_image, "'/>",
file=f, sep="")
if island.title:
print(
self.text_tag.format(
size=1000 * self.text_size,
x=1000 * (island.bounding_box.x*0.5 + island.pos.x + self.margin.x),
y=1000 * (self.page_size.y - island.pos.y - self.margin.y - 0.2 * self.text_size),
label=island.title),
file=f)
data_markers, data_stickerfill = list(), list()
for marker in island.markers:
if isinstance(marker, Sticker):
data_stickerfill.append("M {} Z".format(
line_through(self.format_vertex(co + island.pos) for co in marker.points)))
if marker.text:
data_markers.append(self.text_transformed_tag.format(
label=marker.text,
pos=self.format_vertex(marker.center + island.pos),
mat=format_matrix(marker.rot),
size=marker.width * 1000))
elif isinstance(marker, Arrow):
size = marker.size * 1000
position = marker.center + marker.size * marker.rot @ M.Vector((0, -0.9))
data_markers.append(self.arrow_marker_tag.format(
index=marker.text,
arrow_pos=self.format_vertex(marker.center + island.pos),
scale=size,
pos=self.format_vertex(position + island.pos - marker.size*M.Vector((0, 0.4))),
mat=format_matrix(size * marker.rot)))
elif isinstance(marker, NumberAlone):
data_markers.append(self.text_transformed_tag.format(
label=marker.text,
pos=self.format_vertex(marker.center + island.pos),
mat=format_matrix(marker.rot),
size=marker.size * 1000))
if data_stickerfill and self.style.sticker_color[3] > 0:
print("<path class='sticker' d='", rows(data_stickerfill), "'/>", file=f)
data_outer, data_convex, data_concave, data_freestyle = (list() for i in range(4))
outer_edges = set(island.boundary)
while outer_edges:
data_loop = list()
uvedge = outer_edges.pop()
while 1:
if uvedge.sticker:
data_loop.extend(self.format_vertex(co + island.pos) for co in uvedge.sticker.points[1:])
else:
vertex = uvedge.vb if uvedge.uvface.flipped else uvedge.va
data_loop.append(self.format_vertex(vertex.co + island.pos))
uvedge = uvedge.neighbor_right
try:
outer_edges.remove(uvedge)
except KeyError:
break
data_outer.append("M {} Z".format(line_through(data_loop)))
visited_edges = set()
for loop, uvedge in island.edges.items():
edge = mesh.edges[loop.edge]
if edge.is_cut(uvedge.uvface.face) and not uvedge.sticker:
continue
data_uvedge = "M {}".format(
line_through(self.format_vertex(v.co + island.pos) for v in (uvedge.va, uvedge.vb)))
if edge.freestyle:
data_freestyle.append(data_uvedge)
# each uvedge is in two opposite-oriented variants; we want to add each only once
vertex_pair = frozenset((uvedge.va, uvedge.vb))
if vertex_pair not in visited_edges:
visited_edges.add(vertex_pair)
if edge.angle > self.angle_epsilon:
data_convex.append(data_uvedge)
elif edge.angle < -self.angle_epsilon:
data_concave.append(data_uvedge)
if island.is_inside_out:
data_convex, data_concave = data_concave, data_convex
if data_freestyle:
print("<path class='freestyle' d='", rows(data_freestyle), "'/>", file=f)
if (data_convex or data_concave) and not self.pure_net and self.style.use_inbg:
print("<path class='inner_background' d='", rows(data_convex + data_concave), "'/>", file=f)
if data_convex:
print("<path class='convex' d='", rows(data_convex), "'/>", file=f)
if data_concave:
print("<path class='concave' d='", rows(data_concave), "'/>", file=f)
if data_outer:
if not self.pure_net and self.style.use_outbg:
print("<path class='outer_background' d='", rows(data_outer), "'/>", file=f)
print("<path class='outer' d='", rows(data_outer), "'/>", file=f)
if data_markers:
print(rows(data_markers), file=f)
print("</g>", file=f)
if len(page.islands) > 1:
print("</g>", file=f)
print("</svg>", file=f)
image_linked_tag = "<image transform='translate({pos})' width='{width:.6f}' height='{height:.6f}' xlink:href='{path}'/>"
image_embedded_tag = "<image transform='translate({pos})' width='{width:.6f}' height='{height:.6f}' xlink:href='data:image/png;base64,"
text_tag = "<text transform='translate({x} {y})' style='font-size:{size:.2f}'><tspan>{label}</tspan></text>"
text_transformed_tag = "<text transform='matrix({mat} {pos})' style='font-size:{size:.2f}'><tspan>{label}</tspan></text>"
arrow_marker_tag = "<g><path transform='matrix({mat} {arrow_pos})' class='arrow' d='M 0 0 L 1 1 L 0 0.25 L -1 1 Z'/>" \
"<text transform='translate({pos})' style='font-size:{scale:.2f}'><tspan>{index}</tspan></text></g>"
svg_base = """<?xml version='1.0' encoding='UTF-8' standalone='no'?>
<svg xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' version='1.1'
width='{width:.2f}mm' height='{height:.2f}mm' viewBox='0 0 {width:.2f} {height:.2f}'>"""
css_base = """<style type="text/css">
path {{
fill: none;
stroke-linecap: butt;
stroke-linejoin: bevel;
stroke-dasharray: none;
}}
path.outer {{
stroke: {outer_color};
stroke-dasharray: {outer_style};
stroke-dashoffset: 0;
stroke-width: {outer_width:.2};
stroke-opacity: {outer_alpha:.2};
}}
path.convex {{
stroke: {convex_color};
stroke-dasharray: {convex_style};
stroke-dashoffset:0;
stroke-width:{convex_width:.2};
stroke-opacity: {convex_alpha:.2}
}}
path.concave {{
stroke: {concave_color};
stroke-dasharray: {concave_style};
stroke-dashoffset: 0;
stroke-width: {concave_width:.2};
stroke-opacity: {concave_alpha:.2}
}}
path.freestyle {{
stroke: {freestyle_color};
stroke-dasharray: {freestyle_style};
stroke-dashoffset: 0;
stroke-width: {freestyle_width:.2};
stroke-opacity: {freestyle_alpha:.2}
}}
path.outer_background {{
stroke: {outbg_color};
stroke-opacity: {outbg_alpha};
stroke-width: {outbg_width:.2}
}}
path.inner_background {{
stroke: {inbg_color};
stroke-opacity: {inbg_alpha};
stroke-width: {inbg_width:.2}
}}
path.sticker {{
fill: {sticker_color};
stroke: none;
fill-opacity: {sticker_alpha:.2};
}}
path.arrow {{
fill: {text_color};
}}
text {{
font-style: normal;
fill: {text_color};
fill-opacity: {text_alpha:.2};
stroke: none;
}}
text, tspan {{
text-anchor:middle;
}}
</style>"""
class Pdf:
"""Simple PDF exporter"""
mm_to_pt = 72 / 25.4
character_width_packed = {
191: "'", 222: 'ijl\x82\x91\x92', 278: '|¦\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !,./:;I[\\]ft\xa0·ÌÍÎÏìíîï',
333: '()-`r\x84\x88\x8b\x93\x94\x98\x9b¡¨\xad¯²³´¸¹{}', 350: '\x7f\x81\x8d\x8f\x90\x95\x9d', 365: '"ºª*°', 469: '^', 500: 'Jcksvxyz\x9a\x9eçýÿ', 584: '¶+<=>~¬±×÷', 611: 'FTZ\x8e¿ßø',
667: '&ABEKPSVXY\x8a\x9fÀÁÂÃÄÅÈÉÊËÝÞ', 722: 'CDHNRUwÇÐÑÙÚÛÜ', 737: '©®', 778: 'GOQÒÓÔÕÖØ', 833: 'Mm¼½¾', 889: '%æ', 944: 'W\x9c', 1000: '\x85\x89\x8c\x97\x99Æ', 1015: '@', }
character_width = {c: value for (value, chars) in character_width_packed.items() for c in chars}
def __init__(self, properties):
init_exporter(self, properties)
self.styles = dict()
def text_width(self, text, scale=None):
return (scale or self.text_size) * sum(self.character_width.get(c, 556) for c in text) / 1000
def styling(self, name, do_stroke=True):
s, m, l = (length * self.style.line_width * 1000 for length in (1, 4, 9))
format_style = {'SOLID': [], 'DOT': [s, m], 'DASH': [m, l], 'LONGDASH': [l, m], 'DASHDOT': [l, m, s, m]}
style, color, width = (getattr(self.style, f"{name}_{arg}", None) for arg in ("style", "color", "width"))
style = style or 'SOLID'
result = ["q"]
if do_stroke:
result += [
"[ " + " ".join("{:.3f}".format(num) for num in format_style[style]) + " ] 0 d",
"{0:.3f} {1:.3f} {2:.3f} RG".format(*color),
"{:.3f} w".format(self.style.line_width * 1000 * width),
]
else:
result.append("{0:.3f} {1:.3f} {2:.3f} rg".format(*color))
if color[3] < 1:
style_name = "R{:03}".format(round(1000 * color[3]))
result.append("/{} gs".format(style_name))
if style_name not in self.styles:
self.styles[style_name] = {"CA": color[3], "ca": color[3]}
return result
@classmethod
def encode_image(cls, bpy_image):
data = bytes(int(255 * px) for (i, px) in enumerate(bpy_image.pixels) if i % 4 != 3)
image = {
"Type": "XObject", "Subtype": "Image", "Width": bpy_image.size[0], "Height": bpy_image.size[1],
"ColorSpace": "DeviceRGB", "BitsPerComponent": 8, "Interpolate": True,
"Filter": ["ASCII85Decode", "FlateDecode"], "stream": data}
return image
def write(self, mesh, filename):
def format_dict(obj, refs=tuple()):
content = "".join("/{} {}\n".format(key, format_value(value, refs)) for (key, value) in obj.items())
return f"<< {content} >>"
def line_through(seq):
fmt = "{0.x:.6f} {0.y:.6f} {1} ".format
return "".join(fmt(1000*co, cmd) for (co, cmd) in zip(seq, chain("m", repeat("l"))))
def format_value(value, refs=tuple()):
if value in refs:
return "{} 0 R".format(refs.index(value) + 1)
elif type(value) is dict:
return format_dict(value, refs)
elif type(value) in (list, tuple):
return "[ " + " ".join(format_value(item, refs) for item in value) + " ]"
elif type(value) is int:
return str(value)
elif type(value) is float:
return "{:.6f}".format(value)
elif type(value) is bool:
return "true" if value else "false"
else:
return "/{}".format(value) # this script can output only PDF names, no strings
def write_object(index, obj, refs, f, stream=None):
byte_count = f.write("{} 0 obj\n".format(index).encode())
if type(obj) is not dict:
stream, obj = obj, dict()
elif "stream" in obj:
stream = obj.pop("stream")
if stream:
obj["Filter"] = "FlateDecode"
stream = encode(stream)
obj["Length"] = len(stream)
byte_count += f.write(format_dict(obj, refs).encode())
if stream:
byte_count += f.write(b"\nstream\n")
byte_count += f.write(stream)
byte_count += f.write(b"\nendstream")
return byte_count + f.write(b"\nendobj\n")
def encode(data):
from zlib import compress
if hasattr(data, "encode"):
data = data.encode()
return compress(data)
page_size_pt = 1000 * self.mm_to_pt * self.page_size
reset_style = ["Q"] # graphic command for later use
root = {"Type": "Pages", "MediaBox": [0, 0, page_size_pt.x, page_size_pt.y], "Kids": list()}
catalog = {"Type": "Catalog", "Pages": root}
font = {
"Type": "Font", "Subtype": "Type1", "Name": "F1",
"BaseFont": "Helvetica", "Encoding": "MacRomanEncoding"}
objects = [root, catalog, font]
for page in mesh.pages:
commands = ["{0:.6f} 0 0 {0:.6f} 0 0 cm".format(self.mm_to_pt)]
resources = {"Font": {"F1": font}, "ExtGState": self.styles, "ProcSet": ["PDF"]}
if any(island.embedded_image for island in page.islands):
resources["XObject"] = dict()
resources["ProcSet"].append("ImageC")
for island in page.islands:
commands.append("q 1 0 0 1 {0.x:.6f} {0.y:.6f} cm".format(1000*(self.margin + island.pos)))
if island.embedded_image:
identifier = "I{}".format(len(resources["XObject"]) + 1)
commands.append(self.command_image.format(1000 * island.bounding_box, identifier))
objects.append(island.embedded_image)
resources["XObject"][identifier] = island.embedded_image
if island.title:
commands += self.styling("text", do_stroke=False)
commands.append(self.command_label.format(
size=1000*self.text_size,
x=500 * (island.bounding_box.x - self.text_width(island.title)),
y=1000 * 0.2 * self.text_size,
label=island.title))
commands += reset_style
data_markers, data_stickerfill = list(), list()
for marker in island.markers:
if isinstance(marker, Sticker):
data_stickerfill.append(line_through(marker.points) + "f")
if marker.text:
data_markers.append(self.command_sticker.format(
label=marker.text,
pos=1000*marker.center,
mat=marker.rot,
align=-500 * self.text_width(marker.text, marker.width),
size=1000*marker.width))
elif isinstance(marker, Arrow):
size = 1000 * marker.size
position = 1000 * (marker.center + marker.size * marker.rot @ M.Vector((0, -0.9)))
data_markers.append(self.command_arrow.format(
index=marker.text,
arrow_pos=1000 * marker.center,
pos=position - 1000 * M.Vector((0.5 * self.text_width(marker.text), 0.4 * self.text_size)),
mat=size * marker.rot,
size=size))
elif isinstance(marker, NumberAlone):
data_markers.append(self.command_number.format(
label=marker.text,
pos=1000*marker.center,
mat=marker.rot,
size=1000*marker.size))
data_outer, data_convex, data_concave, data_freestyle = (list() for i in range(4))
outer_edges = set(island.boundary)
while outer_edges:
data_loop = list()
uvedge = outer_edges.pop()
while 1:
if uvedge.sticker:
data_loop.extend(uvedge.sticker.points[1:])
else:
vertex = uvedge.vb if uvedge.uvface.flipped else uvedge.va
data_loop.append(vertex.co)
uvedge = uvedge.neighbor_right
try:
outer_edges.remove(uvedge)
except KeyError:
break
data_outer.append(line_through(data_loop) + "s")
for loop, uvedge in island.edges.items():
edge = mesh.edges[loop.edge]
if edge.is_cut(uvedge.uvface.face) and not uvedge.sticker:
continue
data_uvedge = line_through((uvedge.va.co, uvedge.vb.co)) + "S"
if edge.freestyle:
data_freestyle.append(data_uvedge)
# each uvedge exists in two opposite-oriented variants; we want to add each only once
if uvedge.sticker or uvedge.uvface.flipped != (id(uvedge.va) > id(uvedge.vb)):
if edge.angle > self.angle_epsilon:
data_convex.append(data_uvedge)
elif edge.angle < -self.angle_epsilon:
data_concave.append(data_uvedge)
if island.is_inside_out:
data_convex, data_concave = data_concave, data_convex
if data_stickerfill and self.style.sticker_color[3] > 0:
commands += chain(self.styling("sticker", do_stroke=False), data_stickerfill, reset_style)
if data_freestyle:
commands += chain(self.styling("freestyle"), data_freestyle, reset_style)
if (data_convex or data_concave) and not self.pure_net and self.style.use_inbg:
commands += chain(self.styling("inbg"), data_convex, data_concave, reset_style)
if data_convex:
commands += chain(self.styling("convex"), data_convex, reset_style)
if data_concave:
commands += chain(self.styling("concave"), data_concave, reset_style)
if data_outer:
if not self.pure_net and self.style.use_outbg:
commands += chain(self.styling("outbg"), data_outer, reset_style)
commands += chain(self.styling("outer"), data_outer, reset_style)
if data_markers:
commands += chain(self.styling("text", do_stroke=False), data_markers, reset_style)
commands += reset_style # return from island to page coordinates
content = "\n".join(commands)
page = {"Type": "Page", "Parent": root, "Contents": content, "Resources": resources}
root["Kids"].append(page)
objects += page, content
objects.extend(self.styles.values())
root["Count"] = len(root["Kids"])
with open(filename, "wb+") as f:
xref_table = list()
position = 0
position += f.write(b"%PDF-1.4\n")
position += f.write(b"%\xde\xad\xbe\xef\n")
for index, obj in enumerate(objects, 1):
xref_table.append(position)
position += write_object(index, obj, objects, f)
xref_pos = position
f.write("xref\n0 {}\n".format(len(xref_table) + 1).encode())
f.write("{:010} {:05} f\r\n".format(0, 65535).encode())
for position in xref_table:
f.write("{:010} {:05} n\r\n".format(position, 0).encode())
f.write(b"trailer\n")
f.write(format_dict({"Size": len(xref_table) + 1, "Root": catalog}, objects).encode())
f.write("\nstartxref\n{}\n%%EOF\n".format(xref_pos).encode())
command_label = "q /F1 {size:.6f} Tf BT {x:.6f} {y:.6f} Td ({label}) Tj ET Q"
command_image = "q {0.x:.6f} 0 0 {0.y:.6f} 0 0 cm 1 0 0 -1 0 1 cm /{1} Do Q"
command_sticker = "q /F1 {size:.6f} Tf {mat[0][0]:.6f} {mat[1][0]:.6f} {mat[0][1]:.6f} {mat[1][1]:.6f} {pos.x:.6f} {pos.y:.6f} cm BT {align:.6f} 0 Td ({label}) Tj ET Q"
command_arrow = "q /F1 {size:.6f} Tf BT {pos.x:.6f} {pos.y:.6f} Td ({index}) Tj ET {mat[0][0]:.6f} {mat[1][0]:.6f} {mat[0][1]:.6f} {mat[1][1]:.6f} {arrow_pos.x:.6f} {arrow_pos.y:.6f} cm 0 0 m 1 -1 l 0 -0.25 l -1 -1 l f Q"
command_number = "q /F1 {size:.6f} Tf {mat[0][0]:.6f} {mat[1][0]:.6f} {mat[0][1]:.6f} {mat[1][1]:.6f} {pos.x:.6f} {pos.y:.6f} cm BT ({label}) Tj ET Q"
class Unfold(bpy.types.Operator):
"""Blender Operator: unfold the selected object."""
bl_idname = "mesh.unfold"
bl_label = "Unfold"
bl_description = "Mark seams so that the mesh can be exported as a paper model"
bl_options = {'REGISTER', 'UNDO'}
edit: bpy.props.BoolProperty(default=False, options={'HIDDEN'})
priority_effect_convex: bpy.props.FloatProperty(
name="Priority Convex", description="Priority effect for edges in convex angles",
default=default_priority_effect['CONVEX'], soft_min=-1, soft_max=10, subtype='FACTOR')
priority_effect_concave: bpy.props.FloatProperty(
name="Priority Concave", description="Priority effect for edges in concave angles",
default=default_priority_effect['CONCAVE'], soft_min=-1, soft_max=10, subtype='FACTOR')
priority_effect_length: bpy.props.FloatProperty(
name="Priority Length", description="Priority effect of edge length",
default=default_priority_effect['LENGTH'], soft_min=-10, soft_max=1, subtype='FACTOR')
do_create_uvmap: bpy.props.BoolProperty(
name="Create UVMap", description="Create a new UV Map showing the islands and page layout", default=False)
object = None
@classmethod
def poll(cls, context):
return context.active_object and context.active_object.type == "MESH"
def draw(self, context):
layout = self.layout
col = layout.column()
col.active = not self.object or len(self.object.data.uv_layers) < 8
col.prop(self.properties, "do_create_uvmap")
layout.label(text="Edge Cutting Factors:")
col = layout.column(align=True)
col.label(text="Face Angle:")
col.prop(self.properties, "priority_effect_convex", text="Convex")
col.prop(self.properties, "priority_effect_concave", text="Concave")
layout.prop(self.properties, "priority_effect_length", text="Edge Length")
def execute(self, context):
sce = bpy.context.scene
settings = sce.paper_model
recall_mode = context.object.mode
bpy.ops.object.mode_set(mode='EDIT')
self.object = context.object
cage_size = M.Vector((settings.output_size_x, settings.output_size_y))
priority_effect = {
'CONVEX': self.priority_effect_convex,
'CONCAVE': self.priority_effect_concave,
'LENGTH': self.priority_effect_length}
try:
unfolder = Unfolder(self.object)
unfolder.do_create_uvmap = self.do_create_uvmap
scale = sce.unit_settings.scale_length / settings.scale
unfolder.prepare(cage_size, priority_effect, scale, settings.limit_by_page)
unfolder.mesh.mark_cuts()
except UnfoldError as error:
self.report(type={'ERROR_INVALID_INPUT'}, message=error.args[0])
error.mesh_select()
bpy.ops.object.mode_set(mode=recall_mode)
return {'CANCELLED'}
mesh = self.object.data
mesh.update()
if mesh.paper_island_list:
unfolder.copy_island_names(mesh.paper_island_list)
island_list = mesh.paper_island_list
attributes = {item.label: (item.abbreviation, item.auto_label, item.auto_abbrev) for item in island_list}
island_list.clear() # remove previously defined islands
for island in unfolder.mesh.islands:
# add islands to UI list and set default descriptions
list_item = island_list.add()
# add faces' IDs to the island
for face in island.faces:
lface = list_item.faces.add()
lface.id = face.index
list_item["label"] = island.label
list_item["abbreviation"], list_item["auto_label"], list_item["auto_abbrev"] = attributes.get(
island.label,
(island.abbreviation, True, True))
island_item_changed(list_item, context)
mesh.paper_island_index = -1
del unfolder
bpy.ops.object.mode_set(mode=recall_mode)
return {'FINISHED'}
class ClearAllSeams(bpy.types.Operator):
"""Blender Operator: clear all seams of the active Mesh and all its unfold data"""
bl_idname = "mesh.clear_all_seams"
bl_label = "Clear All Seams"
bl_description = "Clear all the seams and unfolded islands of the active object"
@classmethod
def poll(cls, context):
return context.active_object and context.active_object.type == 'MESH'
def execute(self, context):
ob = context.active_object
mesh = ob.data
for edge in mesh.edges:
edge.use_seam = False
mesh.paper_island_list.clear()
return {'FINISHED'}
def page_size_preset_changed(self, context):
"""Update the actual document size to correct values"""
if hasattr(self, "limit_by_page") and not self.limit_by_page:
return
if self.page_size_preset == 'A4':
self.output_size_x = 0.210
self.output_size_y = 0.297
elif self.page_size_preset == 'A3':
self.output_size_x = 0.297
self.output_size_y = 0.420
elif self.page_size_preset == 'US_LETTER':
self.output_size_x = 0.216
self.output_size_y = 0.279
elif self.page_size_preset == 'US_LEGAL':
self.output_size_x = 0.216
self.output_size_y = 0.356
class PaperModelStyle(bpy.types.PropertyGroup):
line_styles = [
('SOLID', "Solid (----)", "Solid line"),
('DOT', "Dots (. . .)", "Dotted line"),
('DASH', "Short Dashes (- - -)", "Solid line"),
('LONGDASH', "Long Dashes (-- --)", "Solid line"),
('DASHDOT', "Dash-dotted (-- .)", "Solid line")
]
outer_color: bpy.props.FloatVectorProperty(
name="Outer Lines", description="Color of net outline",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
outer_style: bpy.props.EnumProperty(
name="Outer Lines Drawing Style", description="Drawing style of net outline",
default='SOLID', items=line_styles)
line_width: bpy.props.FloatProperty(
name="Base Lines Thickness", description="Base thickness of net lines, each actual value is a multiple of this length",
default=1e-4, min=0, soft_max=5e-3, precision=5, step=1e-2, subtype="UNSIGNED", unit="LENGTH")
outer_width: bpy.props.FloatProperty(
name="Outer Lines Thickness", description="Relative thickness of net outline",
default=3, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
use_outbg: bpy.props.BoolProperty(
name="Highlight Outer Lines", description="Add another line below every line to improve contrast",
default=True)
outbg_color: bpy.props.FloatVectorProperty(
name="Outer Highlight", description="Color of the highlight for outer lines",
default=(1.0, 1.0, 1.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
outbg_width: bpy.props.FloatProperty(
name="Outer Highlight Thickness", description="Relative thickness of the highlighting lines",
default=5, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
convex_color: bpy.props.FloatVectorProperty(
name="Inner Convex Lines", description="Color of lines to be folded to a convex angle",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
convex_style: bpy.props.EnumProperty(
name="Convex Lines Drawing Style", description="Drawing style of lines to be folded to a convex angle",
default='DASH', items=line_styles)
convex_width: bpy.props.FloatProperty(
name="Convex Lines Thickness", description="Relative thickness of concave lines",
default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
concave_color: bpy.props.FloatVectorProperty(
name="Inner Concave Lines", description="Color of lines to be folded to a concave angle",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
concave_style: bpy.props.EnumProperty(
name="Concave Lines Drawing Style", description="Drawing style of lines to be folded to a concave angle",
default='DASHDOT', items=line_styles)
concave_width: bpy.props.FloatProperty(
name="Concave Lines Thickness", description="Relative thickness of concave lines",
default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
freestyle_color: bpy.props.FloatVectorProperty(
name="Freestyle Edges", description="Color of lines marked as Freestyle Edge",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
freestyle_style: bpy.props.EnumProperty(
name="Freestyle Edges Drawing Style", description="Drawing style of Freestyle Edges",
default='SOLID', items=line_styles)
freestyle_width: bpy.props.FloatProperty(
name="Freestyle Edges Thickness", description="Relative thickness of Freestyle edges",
default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
use_inbg: bpy.props.BoolProperty(
name="Highlight Inner Lines", description="Add another line below every line to improve contrast",
default=True)
inbg_color: bpy.props.FloatVectorProperty(
name="Inner Highlight", description="Color of the highlight for inner lines",
default=(1.0, 1.0, 1.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
inbg_width: bpy.props.FloatProperty(
name="Inner Highlight Thickness", description="Relative thickness of the highlighting lines",
default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
sticker_color: bpy.props.FloatVectorProperty(
name="Tabs Fill", description="Fill color of sticking tabs",
default=(0.9, 0.9, 0.9, 1.0), min=0, max=1, subtype='COLOR', size=4)
text_color: bpy.props.FloatVectorProperty(
name="Text Color", description="Color of all text used in the document",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
bpy.utils.register_class(PaperModelStyle)
class ExportPaperModel(bpy.types.Operator):
"""Blender Operator: save the selected object's net and optionally bake its texture"""
bl_idname = "export_mesh.paper_model"
bl_label = "Export Paper Model"
bl_description = "Export the selected object's net and optionally bake its texture"
bl_options = {'PRESET'}
filepath: bpy.props.StringProperty(
name="File Path", description="Target file to save the SVG", options={'SKIP_SAVE'})
filename: bpy.props.StringProperty(
name="File Name", description="Name of the file", options={'SKIP_SAVE'})
directory: bpy.props.StringProperty(
name="Directory", description="Directory of the file", options={'SKIP_SAVE'})
page_size_preset: bpy.props.EnumProperty(
name="Page Size", description="Size of the exported document",
default='A4', update=page_size_preset_changed, items=global_paper_sizes)
output_size_x: bpy.props.FloatProperty(
name="Page Width", description="Width of the exported document",
default=0.210, soft_min=0.105, soft_max=0.841, subtype="UNSIGNED", unit="LENGTH")
output_size_y: bpy.props.FloatProperty(
name="Page Height", description="Height of the exported document",
default=0.297, soft_min=0.148, soft_max=1.189, subtype="UNSIGNED", unit="LENGTH")
output_margin: bpy.props.FloatProperty(
name="Page Margin", description="Distance from page borders to the printable area",
default=0.005, min=0, soft_max=0.1, step=0.1, subtype="UNSIGNED", unit="LENGTH")
output_type: bpy.props.EnumProperty(
name="Textures", description="Source of a texture for the model",
default='NONE', items=[
('NONE', "No Texture", "Export the net only"),
('TEXTURE', "From Materials", "Render the diffuse color and all painted textures"),
('AMBIENT_OCCLUSION', "Ambient Occlusion", "Render the Ambient Occlusion pass"),
('RENDER', "Full Render", "Render the material in actual scene illumination"),
('SELECTED_TO_ACTIVE', "Selected to Active", "Render all selected surrounding objects as a texture")
])
do_create_stickers: bpy.props.BoolProperty(
name="Create Tabs", description="Create gluing tabs around the net (useful for paper)",
default=True)
do_create_numbers: bpy.props.BoolProperty(
name="Create Numbers", description="Enumerate edges to make it clear which edges should be sticked together",
default=True)
sticker_width: bpy.props.FloatProperty(
name="Tabs and Text Size", description="Width of gluing tabs and their numbers",
default=0.005, soft_min=0, soft_max=0.05, step=0.1, subtype="UNSIGNED", unit="LENGTH")
angle_epsilon: bpy.props.FloatProperty(
name="Hidden Edge Angle", description="Folds with angle below this limit will not be drawn",
default=pi/360, min=0, soft_max=pi/4, step=0.01, subtype="ANGLE", unit="ROTATION")
output_dpi: bpy.props.FloatProperty(
name="Resolution (DPI)", description="Resolution of images in pixels per inch",
default=90, min=1, soft_min=30, soft_max=600, subtype="UNSIGNED")
bake_samples: bpy.props.IntProperty(
name="Samples", description="Number of samples to render for each pixel",
default=64, min=1, subtype="UNSIGNED")
file_format: bpy.props.EnumProperty(
name="Document Format", description="File format of the exported net",
default='PDF', items=[
('PDF', "PDF", "Adobe Portable Document Format 1.4"),
('SVG', "SVG", "W3C Scalable Vector Graphics"),
])
image_packing: bpy.props.EnumProperty(
name="Image Packing Method", description="Method of attaching baked image(s) to the SVG",
default='ISLAND_EMBED', items=[
('PAGE_LINK', "Single Linked", "Bake one image per page of output and save it separately"),
('ISLAND_LINK', "Linked", "Bake images separately for each island and save them in a directory"),
('ISLAND_EMBED', "Embedded", "Bake images separately for each island and embed them into the SVG")
])
scale: bpy.props.FloatProperty(
name="Scale", description="Divisor of all dimensions when exporting",
default=1, soft_min=1.0, soft_max=100.0, subtype='FACTOR', precision=1)
do_create_uvmap: bpy.props.BoolProperty(
name="Create UVMap",
description="Create a new UV Map showing the islands and page layout",
default=False, options={'SKIP_SAVE'})
ui_expanded_document: bpy.props.BoolProperty(
name="Show Document Settings Expanded",
description="Shows the box 'Document Settings' expanded in user interface",
default=True, options={'SKIP_SAVE'})
ui_expanded_style: bpy.props.BoolProperty(
name="Show Style Settings Expanded",
description="Shows the box 'Colors and Style' expanded in user interface",
default=False, options={'SKIP_SAVE'})
style: bpy.props.PointerProperty(type=PaperModelStyle)
unfolder = None
@classmethod
def poll(cls, context):
return context.active_object and context.active_object.type == 'MESH'
def prepare(self, context):
sce = context.scene
self.recall_mode = context.object.mode
bpy.ops.object.mode_set(mode='EDIT')
self.object = context.active_object
self.unfolder = Unfolder(self.object)
cage_size = M.Vector((sce.paper_model.output_size_x, sce.paper_model.output_size_y))
unfolder_scale = sce.unit_settings.scale_length/self.scale
self.unfolder.prepare(cage_size, scale=unfolder_scale, limit_by_page=sce.paper_model.limit_by_page)
if sce.paper_model.use_auto_scale:
self.scale = ceil(self.get_scale_ratio(sce))
def recall(self):
if self.unfolder:
del self.unfolder
bpy.ops.object.mode_set(mode=self.recall_mode)
def invoke(self, context, event):
self.scale = context.scene.paper_model.scale
try:
self.prepare(context)
except UnfoldError as error:
self.report(type={'ERROR_INVALID_INPUT'}, message=error.args[0])
error.mesh_select()
self.recall()
return {'CANCELLED'}
wm = context.window_manager
wm.fileselect_add(self)
return {'RUNNING_MODAL'}
def execute(self, context):
if not self.unfolder:
self.prepare(context)
self.unfolder.do_create_uvmap = self.do_create_uvmap
try:
if self.object.data.paper_island_list:
self.unfolder.copy_island_names(self.object.data.paper_island_list)
self.unfolder.save(self.properties)
self.report({'INFO'}, "Saved a {}-page document".format(len(self.unfolder.mesh.pages)))
return {'FINISHED'}
except UnfoldError as error:
self.report(type={'ERROR_INVALID_INPUT'}, message=error.args[0])
return {'CANCELLED'}
finally:
self.recall()
def get_scale_ratio(self, sce):
margin = self.output_margin + self.sticker_width
if min(self.output_size_x, self.output_size_y) <= 2 * margin:
return False
output_inner_size = M.Vector((self.output_size_x - 2*margin, self.output_size_y - 2*margin))
ratio = self.unfolder.mesh.largest_island_ratio(output_inner_size)
return ratio * sce.unit_settings.scale_length / self.scale
def draw(self, context):
layout = self.layout
layout.prop(self.properties, "do_create_uvmap")
layout.prop(self.properties, "scale", text="Scale: 1/")
scale_ratio = self.get_scale_ratio(context.scene)
if scale_ratio > 1:
layout.label(
text="An island is roughly {:.1f}x bigger than page".format(scale_ratio),
icon="ERROR")
elif scale_ratio > 0:
layout.label(text="Largest island is roughly 1/{:.1f} of page".format(1 / scale_ratio))
if context.scene.unit_settings.scale_length != 1:
layout.label(
text="Unit scale {:.1f} makes page size etc. not display correctly".format(
context.scene.unit_settings.scale_length), icon="ERROR")
box = layout.box()
row = box.row(align=True)
row.prop(
self.properties, "ui_expanded_document", text="",
icon=('TRIA_DOWN' if self.ui_expanded_document else 'TRIA_RIGHT'), emboss=False)
row.label(text="Document Settings")
if self.ui_expanded_document:
box.prop(self.properties, "file_format", text="Format")
box.prop(self.properties, "page_size_preset")
col = box.column(align=True)
col.active = self.page_size_preset == 'USER'
col.prop(self.properties, "output_size_x")
col.prop(self.properties, "output_size_y")
box.prop(self.properties, "output_margin")
col = box.column()
col.prop(self.properties, "do_create_stickers")
col.prop(self.properties, "do_create_numbers")
col = box.column()
col.active = self.do_create_stickers or self.do_create_numbers
col.prop(self.properties, "sticker_width")
box.prop(self.properties, "angle_epsilon")
box.prop(self.properties, "output_type")
col = box.column()
col.active = (self.output_type != 'NONE')
if len(self.object.data.uv_layers) >= 8:
col.label(text="No UV slots left, No Texture is the only option.", icon='ERROR')
elif context.scene.render.engine != 'CYCLES' and self.output_type != 'NONE':
col.label(text="Cycles will be used for texture baking.", icon='ERROR')
row = col.row()
row.active = self.output_type in ('AMBIENT_OCCLUSION', 'RENDER', 'SELECTED_TO_ACTIVE')
row.prop(self.properties, "bake_samples")
col.prop(self.properties, "output_dpi")
row = col.row()
row.active = self.file_format == 'SVG'
row.prop(self.properties, "image_packing", text="Images")
box = layout.box()
row = box.row(align=True)
row.prop(
self.properties, "ui_expanded_style", text="",
icon=('TRIA_DOWN' if self.ui_expanded_style else 'TRIA_RIGHT'), emboss=False)
row.label(text="Colors and Style")
if self.ui_expanded_style:
box.prop(self.style, "line_width", text="Default line width")
col = box.column()
col.prop(self.style, "outer_color")
col.prop(self.style, "outer_width", text="Relative width")
col.prop(self.style, "outer_style", text="Style")
col = box.column()
col.active = self.output_type != 'NONE'
col.prop(self.style, "use_outbg", text="Outer Lines Highlight:")
sub = col.column()
sub.active = self.output_type != 'NONE' and self.style.use_outbg
sub.prop(self.style, "outbg_color", text="")
sub.prop(self.style, "outbg_width", text="Relative width")
col = box.column()
col.prop(self.style, "convex_color")
col.prop(self.style, "convex_width", text="Relative width")
col.prop(self.style, "convex_style", text="Style")
col = box.column()
col.prop(self.style, "concave_color")
col.prop(self.style, "concave_width", text="Relative width")
col.prop(self.style, "concave_style", text="Style")
col = box.column()
col.prop(self.style, "freestyle_color")
col.prop(self.style, "freestyle_width", text="Relative width")
col.prop(self.style, "freestyle_style", text="Style")
col = box.column()
col.active = self.output_type != 'NONE'
col.prop(self.style, "use_inbg", text="Inner Lines Highlight:")
sub = col.column()
sub.active = self.output_type != 'NONE' and self.style.use_inbg
sub.prop(self.style, "inbg_color", text="")
sub.prop(self.style, "inbg_width", text="Relative width")
col = box.column()
col.active = self.do_create_stickers
col.prop(self.style, "sticker_color")
box.prop(self.style, "text_color")
def menu_func_export(self, context):
self.layout.operator("export_mesh.paper_model", text="Paper Model (.pdf/.svg)")
def menu_func_unfold(self, context):
self.layout.operator("mesh.unfold", text="Unfold")
class SelectIsland(bpy.types.Operator):
"""Blender Operator: select all faces of the active island"""
bl_idname = "mesh.select_paper_island"
bl_label = "Select Island"
bl_description = "Select an island of the paper model net"
operation: bpy.props.EnumProperty(
name="Operation", description="Operation with the current selection",
default='ADD', items=[
('ADD', "Add", "Add to current selection"),
('REMOVE', "Remove", "Remove from selection"),
('REPLACE', "Replace", "Select only the ")
])
@classmethod
def poll(cls, context):
return context.active_object and context.active_object.type == 'MESH' and context.mode == 'EDIT_MESH'
def execute(self, context):
ob = context.active_object
me = ob.data
bm = bmesh.from_edit_mesh(me)
island = me.paper_island_list[me.paper_island_index]
faces = {face.id for face in island.faces}
edges = set()
verts = set()
if self.operation == 'REPLACE':
for face in bm.faces:
selected = face.index in faces
face.select = selected
if selected:
edges.update(face.edges)
verts.update(face.verts)
for edge in bm.edges:
edge.select = edge in edges
for vert in bm.verts:
vert.select = vert in verts
else:
selected = (self.operation == 'ADD')
for index in faces:
face = bm.faces[index]
face.select = selected
edges.update(face.edges)
verts.update(face.verts)
for edge in edges:
edge.select = any(face.select for face in edge.link_faces)
for vert in verts:
vert.select = any(edge.select for edge in vert.link_edges)
bmesh.update_edit_mesh(me, loop_triangles=False, destructive=False)
return {'FINISHED'}
class VIEW3D_PT_paper_model_tools(bpy.types.Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'UI'
bl_category = 'Paper'
bl_label = "Unfold"
def draw(self, context):
layout = self.layout
sce = context.scene
obj = context.active_object
mesh = obj.data if obj and obj.type == 'MESH' else None
layout.operator("mesh.unfold")
if context.mode == 'EDIT_MESH':
row = layout.row(align=True)
row.operator("mesh.mark_seam", text="Mark Seam").clear = False
row.operator("mesh.mark_seam", text="Clear Seam").clear = True
else:
layout.operator("mesh.clear_all_seams")
class VIEW3D_PT_paper_model_settings(bpy.types.Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'UI'
bl_category = 'Paper'
bl_label = "Export"
def draw(self, context):
layout = self.layout
sce = context.scene
obj = context.active_object
mesh = obj.data if obj and obj.type == 'MESH' else None
layout.operator("export_mesh.paper_model")
props = sce.paper_model
layout.prop(props, "use_auto_scale")
sub = layout.row()
sub.active = not props.use_auto_scale
sub.prop(props, "scale", text="Model Scale: 1/")
layout.prop(props, "limit_by_page")
col = layout.column()
col.active = props.limit_by_page
col.prop(props, "page_size_preset")
sub = col.column(align=True)
sub.active = props.page_size_preset == 'USER'
sub.prop(props, "output_size_x")
sub.prop(props, "output_size_y")
class DATA_PT_paper_model_islands(bpy.types.Panel):
bl_space_type = 'PROPERTIES'
bl_region_type = 'WINDOW'
bl_context = "data"
bl_label = "Paper Model Islands"
COMPAT_ENGINES = {'BLENDER_RENDER', 'BLENDER_EEVEE', 'BLENDER_WORKBENCH'}
def draw(self, context):
layout = self.layout
sce = context.scene
obj = context.active_object
mesh = obj.data if obj and obj.type == 'MESH' else None
layout.operator("mesh.unfold", icon='FILE_REFRESH')
if mesh and mesh.paper_island_list:
layout.label(
text="1 island:" if len(mesh.paper_island_list) == 1 else
"{} islands:".format(len(mesh.paper_island_list)))
layout.template_list(
'UI_UL_list', 'paper_model_island_list', mesh,
'paper_island_list', mesh, 'paper_island_index', rows=1, maxrows=5)
sub = layout.split(align=True)
sub.operator("mesh.select_paper_island", text="Select").operation = 'ADD'
sub.operator("mesh.select_paper_island", text="Deselect").operation = 'REMOVE'
sub.prop(sce.paper_model, "sync_island", icon='UV_SYNC_SELECT', toggle=True)
if mesh.paper_island_index >= 0:
list_item = mesh.paper_island_list[mesh.paper_island_index]
sub = layout.column(align=True)
sub.prop(list_item, "auto_label")
sub.prop(list_item, "label")
sub.prop(list_item, "auto_abbrev")
row = sub.row()
row.active = not list_item.auto_abbrev
row.prop(list_item, "abbreviation")
else:
layout.box().label(text="Not unfolded")
def label_changed(self, context):
"""The label of an island was changed"""
# accessing properties via [..] to avoid a recursive call after the update
self["auto_label"] = not self.label or self.label.isspace()
island_item_changed(self, context)
def island_item_changed(self, context):
"""The labelling of an island was changed"""
def increment(abbrev, collisions):
letters = "ABCDEFGHIJKLMNPQRSTUVWXYZ123456789"
while abbrev in collisions:
abbrev = abbrev.rstrip(letters[-1])
abbrev = abbrev[:2] + letters[letters.find(abbrev[-1]) + 1 if len(abbrev) == 3 else 0]
return abbrev
# accessing properties via [..] to avoid a recursive call after the update
island_list = context.active_object.data.paper_island_list
if self.auto_label:
self["label"] = "" # avoid self-conflict
number = 1
while any(item.label == "Island {}".format(number) for item in island_list):
number += 1
self["label"] = "Island {}".format(number)
if self.auto_abbrev:
self["abbreviation"] = "" # avoid self-conflict
abbrev = "".join(first_letters(self.label))[:3].upper()
self["abbreviation"] = increment(abbrev, {item.abbreviation for item in island_list})
elif len(self.abbreviation) > 3:
self["abbreviation"] = self.abbreviation[:3]
self.name = "[{}] {} ({} {})".format(
self.abbreviation, self.label, len(self.faces), "faces" if len(self.faces) > 1 else "face")
def island_index_changed(self, context):
"""The active island was changed"""
if context.scene.paper_model.sync_island and SelectIsland.poll(context):
bpy.ops.mesh.select_paper_island(operation='REPLACE')
class FaceList(bpy.types.PropertyGroup):
id: bpy.props.IntProperty(name="Face ID")
class IslandList(bpy.types.PropertyGroup):
faces: bpy.props.CollectionProperty(
name="Faces", description="Faces belonging to this island", type=FaceList)
label: bpy.props.StringProperty(
name="Label", description="Label on this island",
default="", update=label_changed)
abbreviation: bpy.props.StringProperty(
name="Abbreviation", description="Three-letter label to use when there is not enough space",
default="", update=island_item_changed)
auto_label: bpy.props.BoolProperty(
name="Auto Label", description="Generate the label automatically",
default=True, update=island_item_changed)
auto_abbrev: bpy.props.BoolProperty(
name="Auto Abbreviation", description="Generate the abbreviation automatically",
default=True, update=island_item_changed)
class PaperModelSettings(bpy.types.PropertyGroup):
sync_island: bpy.props.BoolProperty(
name="Sync", description="Keep faces of the active island selected",
default=False, update=island_index_changed)
limit_by_page: bpy.props.BoolProperty(
name="Limit Island Size", description="Do not create islands larger than given dimensions",
default=False, update=page_size_preset_changed)
page_size_preset: bpy.props.EnumProperty(
name="Page Size", description="Maximal size of an island",
default='A4', update=page_size_preset_changed, items=global_paper_sizes)
output_size_x: bpy.props.FloatProperty(
name="Width", description="Maximal width of an island",
default=0.2, soft_min=0.105, soft_max=0.841, subtype="UNSIGNED", unit="LENGTH")
output_size_y: bpy.props.FloatProperty(
name="Height", description="Maximal height of an island",
default=0.29, soft_min=0.148, soft_max=1.189, subtype="UNSIGNED", unit="LENGTH")
use_auto_scale: bpy.props.BoolProperty(
name="Automatic Scale", description="Scale the net automatically to fit on paper",
default=True)
scale: bpy.props.FloatProperty(
name="Scale", description="Divisor of all dimensions when exporting",
default=1, soft_min=1.0, soft_max=100.0, subtype='FACTOR', precision=1,
update=lambda settings, _: settings.__setattr__('use_auto_scale', False))
def factory_update_addon_category(cls, prop):
def func(self, context):
if hasattr(bpy.types, cls.__name__):
bpy.utils.unregister_class(cls)
cls.bl_category = self[prop]
bpy.utils.register_class(cls)
return func
class PaperAddonPreferences(bpy.types.AddonPreferences):
bl_idname = __name__
unfold_category: bpy.props.StringProperty(
name="Unfold Panel Category", description="Category in 3D View Toolbox where the Unfold panel is displayed",
default="Paper", update=factory_update_addon_category(VIEW3D_PT_paper_model_tools, 'unfold_category'))
export_category: bpy.props.StringProperty(
name="Export Panel Category", description="Category in 3D View Toolbox where the Export panel is displayed",
default="Paper", update=factory_update_addon_category(VIEW3D_PT_paper_model_settings, 'export_category'))
def draw(self, context):
sub = self.layout.column(align=True)
sub.use_property_split = True
sub.label(text="3D View Panel Category:")
sub.prop(self, "unfold_category", text="Unfold Panel:")
sub.prop(self, "export_category", text="Export Panel:")
module_classes = (
Unfold,
ExportPaperModel,
ClearAllSeams,
SelectIsland,
FaceList,
IslandList,
PaperModelSettings,
DATA_PT_paper_model_islands,
VIEW3D_PT_paper_model_tools,
VIEW3D_PT_paper_model_settings,
PaperAddonPreferences,
)
def register():
for cls in module_classes:
bpy.utils.register_class(cls)
bpy.types.Scene.paper_model = bpy.props.PointerProperty(
name="Paper Model", description="Settings of the Export Paper Model script",
type=PaperModelSettings, options={'SKIP_SAVE'})
bpy.types.Mesh.paper_island_list = bpy.props.CollectionProperty(
name="Island List", type=IslandList)
bpy.types.Mesh.paper_island_index = bpy.props.IntProperty(
name="Island List Index",
default=-1, min=-1, max=100, options={'SKIP_SAVE'}, update=island_index_changed)
bpy.types.TOPBAR_MT_file_export.append(menu_func_export)
bpy.types.VIEW3D_MT_edit_mesh.prepend(menu_func_unfold)
# Force an update on the panel category properties
prefs = bpy.context.preferences.addons[__name__].preferences
prefs.unfold_category = prefs.unfold_category
prefs.export_category = prefs.export_category
def unregister():
bpy.types.TOPBAR_MT_file_export.remove(menu_func_export)
bpy.types.VIEW3D_MT_edit_mesh.remove(menu_func_unfold)
for cls in reversed(module_classes):
bpy.utils.unregister_class(cls)
if __name__ == "__main__":
register()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/keytoon/blender-addons.git
git@gitee.com:keytoon/blender-addons.git
keytoon
blender-addons
blender-addons
master

搜索帮助