代码拉取完成,页面将自动刷新
# -*- coding:utf-8 -*-
# @time :2020/8/13
# @IDE : pycharm
# @author :lxztju
# @github : https://github.com/lxztju
# @Emial : lxztju@163.com
import torch
import argparse
import os
import torch
import torch.nn as nn
import torch.optim as optim
from data import train_dataloader,train_datasets, val_datasets, val_dataloader
import cfg
from utils import adjust_learning_rate_cosine, adjust_learning_rate_step
##创建训练模型参数保存的文件夹
save_folder = cfg.SAVE_FOLDER + cfg.model_name
os.makedirs(save_folder, exist_ok=True)
def test():
model.eval()
total_correct = 0
val_iter = iter(val_dataloader)
max_iter = len(val_dataloader)
for iteration in range(max_iter):
try:
images, labels = next(val_iter)
except:
continue
if torch.cuda.is_available():
images, labels = images.cuda(), labels.cuda()
out = model(images)
prediction = torch.max(out, 1)[1]
correct = (prediction == labels).sum()
total_correct += correct
print('Iteration: {}/{}'.format(iteration, max_iter), 'ACC: %.3f' %(correct.float()/batch_size))
print('All ACC: %.3f'%(total_correct.float()/(len(val_dataloader)* batch_size)))
def load_checkpoint(filepath):
checkpoint = torch.load(filepath)
model = checkpoint['model'] # 提取网络结构
model.load_state_dict(checkpoint['model_state_dict']) # 加载网络权重参数
return model
#####build the network model
if not cfg.RESUME_EPOCH:
print('****** Training {} ****** '.format(cfg.model_name))
print('****** loading the Imagenet pretrained weights ****** ')
if not cfg.model_name.startswith('efficientnet'):
model = cfg.MODEL_NAMES[cfg.model_name](num_classes=cfg.NUM_CLASSES)
# #冻结前边一部分层不训练
ct = 0
for child in model.children():
ct += 1
# print(child)
if ct < 7:
print(child)
for param in child.parameters():
param.requires_grad = False
else:
model = cfg.MODEL_NAMES[cfg.model_name](cfg.model_name,num_classes=cfg.NUM_CLASSES)
# print(model)
c = 0
for name, p in model.named_parameters():
c += 1
# print(name)
if c >=700:
break
p.requires_grad = False
# print(model)
if cfg.RESUME_EPOCH:
print(' ******* Resume training from {} epoch {} *********'.format(cfg.model_name, cfg.RESUME_EPOCH))
model = load_checkpoint(os.path.join(save_folder, 'epoch_{}.pth'.format(cfg.RESUME_EPOCH)))
##进行多gpu的并行计算
if cfg.GPUS>1:
print('****** using multiple gpus to training ********')
model = nn.DataParallel(model,device_ids=list(range(cfg.GPUS)))
else:
print('****** using single gpu to training ********')
print("...... Initialize the network done!!! .......")
###模型放置在gpu上进行计算
if torch.cuda.is_available():
model.cuda()
##定义优化器与损失函数
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=cfg.LR)
# optimizer = optim.Adam(model.parameters(), lr=cfg.LR)
optimizer = optim.SGD(model.parameters(), lr=cfg.LR,
momentum=cfg.MOMENTUM, weight_decay=cfg.WEIGHT_DECAY)
criterion = nn.CrossEntropyLoss()
lr = cfg.LR
batch_size = cfg.BATCH_SIZE
#每一个epoch含有多少个batch
max_batch = len(train_datasets)//batch_size
epoch_size = len(train_datasets) // batch_size
## 训练max_epoch个epoch
max_iter = cfg.MAX_EPOCH * epoch_size
start_iter = cfg.RESUME_EPOCH * epoch_size
epoch = cfg.RESUME_EPOCH
# cosine学习率调整
warmup_epoch=5
warmup_steps = warmup_epoch * epoch_size
global_step = 0
# step 学习率调整参数
stepvalues = (10 * epoch_size, 20 * epoch_size, 30 * epoch_size)
step_index = 0
for iteration in range(start_iter, max_iter):
global_step += 1
##更新迭代器
if iteration % epoch_size == 0:
# create batch iterator
batch_iterator = iter(train_dataloader)
loss = 0
epoch += 1
if epoch > 1:
pass
test()
###保存模型
model.train()
if epoch % 3 == 0 and epoch > 0:
if cfg.GPUS > 1:
checkpoint = {'model': model.module,
'model_state_dict': model.module.state_dict(),
# 'optimizer_state_dict': optimizer.state_dict(),
'epoch': epoch}
torch.save(checkpoint, os.path.join(save_folder, 'epoch_{}.pth'.format(epoch)))
else:
checkpoint = {'model': model,
'model_state_dict': model.state_dict(),
# 'optimizer_state_dict': optimizer.state_dict(),
'epoch': epoch}
torch.save(checkpoint, os.path.join(save_folder, 'epoch_{}.pth'.format(epoch)))
if iteration in stepvalues:
step_index += 1
lr = adjust_learning_rate_step(optimizer, cfg.LR, 0.1, epoch, step_index, iteration, epoch_size)
## 调整学习率
# lr = adjust_learning_rate_cosine(optimizer, global_step=global_step,
# learning_rate_base=cfg.LR,
# total_steps=max_iter,
# warmup_steps=warmup_steps)
## 获取image 和 label
try:
images, labels = next(batch_iterator)
except:
continue
##在pytorch0.4之后将Variable 与tensor进行合并,所以这里不需要进行Variable封装
if torch.cuda.is_available():
images, labels = images.cuda(), labels.cuda()
out = model(images)
loss = criterion(out, labels)
optimizer.zero_grad() # 清空梯度信息,否则在每次进行反向传播时都会累加
loss.backward() # loss反向传播
optimizer.step() ##梯度更新
prediction = torch.max(out, 1)[1]
train_correct = (prediction == labels).sum()
##这里得到的train_correct是一个longtensor型,需要转换为float
# print(train_correct.type())
train_acc = (train_correct.float()) / batch_size
if iteration % 10 == 0:
print('Epoch:' + repr(epoch) + ' || epochiter: ' + repr(iteration % epoch_size) + '/' + repr(epoch_size)
+ '|| Totel iter ' + repr(iteration) + ' || Loss: %.6f||' % (loss.item()) + 'ACC: %.3f ||' %(train_acc * 100) + 'LR: %.8f' % (lr))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。