代码拉取完成,页面将自动刷新
#coding=utf-8
import torch
from torch.autograd import Variable
from torch.backends import cudnn
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import numpy as np
import pprint
from data_loader import KFDataset
from models import KFSGNet
config = dict()
config['lr'] = 0.000001
config['momentum'] = 0.9
config['weight_decay'] = 1e-4
config['epoch_num'] = 400
config['batch_size'] = 72
config['sigma'] = 5.
config['debug_vis'] = False # 是否可视化heatmaps
config['fname'] = 'data/test.csv'
# config['fname'] = 'data/training.csv'
# config['is_test'] = False
config['is_test'] = True
config['save_freq'] = 10
config['checkout'] = 'data/weight/kd_epoch_909_model.ckpt'
config['start_epoch'] = 850
config['eval_freq'] = 5
config['debug'] = False
config['lookup'] = 'data/IdLookupTable.csv'
config['featurename2id'] = {
'left_eye_center_x':0,
'left_eye_center_y':1,
'right_eye_center_x':2,
'right_eye_center_y':3,
'left_eye_inner_corner_x':4,
'left_eye_inner_corner_y':5,
'left_eye_outer_corner_x':6,
'left_eye_outer_corner_y':7,
'right_eye_inner_corner_x':8,
'right_eye_inner_corner_y':9,
'right_eye_outer_corner_x':10,
'right_eye_outer_corner_y':11,
'left_eyebrow_inner_end_x':12,
'left_eyebrow_inner_end_y':13,
'left_eyebrow_outer_end_x':14,
'left_eyebrow_outer_end_y':15,
'right_eyebrow_inner_end_x':16,
'right_eyebrow_inner_end_y':17,
'right_eyebrow_outer_end_x':18,
'right_eyebrow_outer_end_y':19,
'nose_tip_x':20,
'nose_tip_y':21,
'mouth_left_corner_x':22,
'mouth_left_corner_y':23,
'mouth_right_corner_x':24,
'mouth_right_corner_y':25,
'mouth_center_top_lip_x':26,
'mouth_center_top_lip_y':27,
'mouth_center_bottom_lip_x':28,
'mouth_center_bottom_lip_y':29,
}
def get_peak_points(heatmaps):
"""
:param heatmaps: numpy array (N,15,96,96)
:return:numpy array (N,15,2)
"""
N,C,H,W = heatmaps.shape
all_peak_points = []
for i in range(N):
peak_points = []
for j in range(C):
yy,xx = np.where(heatmaps[i,j] == heatmaps[i,j].max())
y = yy[0]
x = xx[0]
peak_points.append([x,y])
all_peak_points.append(peak_points)
all_peak_points = np.array(all_peak_points)
return all_peak_points
def get_mse(pred_points,gts,indices_valid=None):
"""
:param pred_points: numpy (N,15,2)
:param gts: numpy (N,15,2)
:return:
"""
pred_points = pred_points[indices_valid[0],indices_valid[1],:]
gts = gts[indices_valid[0],indices_valid[1],:]
pred_points = Variable(torch.from_numpy(pred_points).float(),requires_grad=False)
gts = Variable(torch.from_numpy(gts).float(),requires_grad=False)
criterion = nn.MSELoss()
loss = criterion(pred_points,gts)
return loss
def calculate_mask(heatmaps_target):
"""
:param heatmaps_target: Variable (N,15,96,96)
:return: Variable (N,15,96,96)
"""
N,C,_,_ = heatmaps_targets.size()
N_idx = []
C_idx = []
for n in range(N):
for c in range(C):
max_v = heatmaps_targets[n,c,:,:].max().data[0]
if max_v != 0.0:
N_idx.append(n)
C_idx.append(c)
mask = Variable(torch.zeros(heatmaps_targets.size()))
mask[N_idx,C_idx,:,:] = 1.
mask = mask.float().cuda()
return mask,[N_idx,C_idx]
if __name__ == '__main__':
pprint.pprint(config)
torch.manual_seed(0)
cudnn.benchmark = True
net = KFSGNet()
net.float().cuda()
net.train()
criterion = nn.MSELoss()
# optimizer = optim.SGD(net.parameters(), lr=config['lr'], momentum=config['momentum'] , weight_decay=config['weight_decay'])
optimizer = optim.Adam(net.parameters(),lr=config['lr'])
trainDataset = KFDataset(config)
trainDataset.load()
trainDataLoader = DataLoader(trainDataset,config['batch_size'],True)
sample_num = len(trainDataset)
if (config['checkout'] != ''):
net.load_state_dict(torch.load(config['checkout']))
for epoch in range(config['start_epoch'],config['epoch_num']+config['start_epoch']):
running_loss = 0.0
for i, (inputs, heatmaps_targets, gts) in enumerate(trainDataLoader):
inputs = Variable(inputs).cuda()
heatmaps_targets = Variable(heatmaps_targets).cuda()
mask,indices_valid = calculate_mask(heatmaps_targets)
optimizer.zero_grad()
outputs = net(inputs)
outputs = outputs * mask
heatmaps_targets = heatmaps_targets * mask
loss = criterion(outputs, heatmaps_targets)
loss.backward()
optimizer.step()
# 统计最大值与最小值
v_max = torch.max(outputs)
v_min = torch.min(outputs)
# 评估
all_peak_points = get_peak_points(heatmaps_targets.cpu().data.numpy())
loss_coor = get_mse(all_peak_points, gts.numpy(),indices_valid)
print('[ Epoch {:005d} -> {:005d} / {} ] loss : {:15} loss_coor : {:15} max : {:10} min : {}'.format(
epoch, i * config['batch_size'],
sample_num, loss.data[0],loss_coor.data[0],v_max.data[0],v_min.data[0]))
if (epoch+1) % config['save_freq'] == 0 or epoch == config['epoch_num'] - 1:
torch.save(net.state_dict(),'kd_epoch_{}_model.ckpt'.format(epoch))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。