代码拉取完成,页面将自动刷新
name: "landmark"
layer {
name: "data"
type: "Input"
top: "data"
input_param {
shape {
dim: 1
dim: 1
dim: 128
dim: 128
}
}
}
layer {
name: "Convolution1"
type: "Convolution"
bottom: "data"
top: "Convolution1"
param {
lr_mult: 1.0
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "BatchNorm1"
type: "BatchNorm"
bottom: "Convolution1"
top: "Convolution1"
batch_norm_param {
use_global_stats: true
}
}
layer {
name: "Scale1"
type: "Scale"
bottom: "Convolution1"
top: "Convolution1"
scale_param {
bias_term: true
}
}
layer {
name: "conv1"
type: "ReLU"
bottom: "Convolution1"
top: "Convolution1"
}
layer {
name: "Convolution2"
type: "Convolution"
bottom: "Convolution1"
top: "Convolution2"
param {
lr_mult: 1.0
}
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "BatchNorm2"
type: "BatchNorm"
bottom: "Convolution2"
top: "Convolution2"
batch_norm_param {
use_global_stats: true
}
}
layer {
name: "Scale2"
type: "Scale"
bottom: "Convolution2"
top: "Convolution2"
scale_param {
bias_term: true
}
}
layer {
name: "conv2"
type: "ReLU"
bottom: "Convolution2"
top: "Convolution2"
}
layer {
name: "Convolution3"
type: "Convolution"
bottom: "Convolution2"
top: "Convolution3"
param {
lr_mult: 1.0
}
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "BatchNorm3"
type: "BatchNorm"
bottom: "Convolution3"
top: "Convolution3"
batch_norm_param {
use_global_stats: true
}
}
layer {
name: "Scale3"
type: "Scale"
bottom: "Convolution3"
top: "Convolution3"
scale_param {
bias_term: true
}
}
layer {
name: "conv3"
type: "ReLU"
bottom: "Convolution3"
top: "Convolution3"
}
layer {
name: "Convolution4"
type: "Convolution"
bottom: "Convolution3"
top: "Convolution4"
param {
lr_mult: 1.0
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "BatchNorm4"
type: "BatchNorm"
bottom: "Convolution4"
top: "Convolution4"
batch_norm_param {
use_global_stats: true
}
}
layer {
name: "Scale4"
type: "Scale"
bottom: "Convolution4"
top: "Convolution4"
scale_param {
bias_term: true
}
}
layer {
name: "conv4"
type: "ReLU"
bottom: "Convolution4"
top: "Convolution4"
}
layer {
name: "Convolution5"
type: "Convolution"
bottom: "Convolution4"
top: "Convolution5"
param {
lr_mult: 1.0
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "BatchNorm5"
type: "BatchNorm"
bottom: "Convolution5"
top: "Convolution5"
batch_norm_param {
use_global_stats: true
}
}
layer {
name: "Scale5"
type: "Scale"
bottom: "Convolution5"
top: "Convolution5"
scale_param {
bias_term: true
}
}
layer {
name: "conv5"
type: "ReLU"
bottom: "Convolution5"
top: "Convolution5"
}
layer {
name: "Convolution6"
type: "Convolution"
bottom: "Convolution5"
top: "Convolution6"
param {
lr_mult: 1.0
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "BatchNorm6"
type: "BatchNorm"
bottom: "Convolution6"
top: "Convolution6"
batch_norm_param {
use_global_stats: true
}
}
layer {
name: "Scale6"
type: "Scale"
bottom: "Convolution6"
top: "Convolution6"
scale_param {
bias_term: true
}
}
layer {
name: "conv6"
type: "ReLU"
bottom: "Convolution6"
top: "Convolution6"
}
layer {
name: "Convolution7"
type: "Convolution"
bottom: "Convolution6"
top: "Convolution7"
param {
lr_mult: 1.0
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "BatchNorm7"
type: "BatchNorm"
bottom: "Convolution7"
top: "Convolution7"
batch_norm_param {
use_global_stats: true
}
}
layer {
name: "Scale7"
type: "Scale"
bottom: "Convolution7"
top: "Convolution7"
scale_param {
bias_term: true
}
}
layer {
name: "conv7"
type: "ReLU"
bottom: "Convolution7"
top: "Convolution7"
}
layer {
name: "Convolution8"
type: "Convolution"
bottom: "Convolution7"
top: "Convolution8"
param {
lr_mult: 1.0
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "BatchNorm8"
type: "BatchNorm"
bottom: "Convolution8"
top: "Convolution8"
batch_norm_param {
use_global_stats: true
}
}
layer {
name: "Scale8"
type: "Scale"
bottom: "Convolution8"
top: "Convolution8"
scale_param {
bias_term: true
}
}
layer {
name: "conv8"
type: "ReLU"
bottom: "Convolution8"
top: "Convolution8"
}
layer {
name: "gap1"
type: "Pooling"
bottom: "Convolution8"
top: "gap1"
pooling_param {
pool: AVE
global_pooling: true
}
}
layer {
name: "fc1"
type: "InnerProduct"
bottom: "gap1"
top: "fc1"
inner_product_param {
num_output: 8
weight_filler {
type: "xavier"
}
}
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。