代码拉取完成,页面将自动刷新
# MIT License
# Copyright (c) 2023 OPPO
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import os
import torch
from functools import partial
import time
import trimesh
import kornia
import util_misc
import util_init
class PE(torch.nn.Module):
"""
positional encoding
"""
def __init__(self, P):
"""
P: (d, F) encoding matrix
"""
super().__init__()
self.register_buffer("P", P)
@property
def out_dim(self):
return self.P.shape[1]*2
def forward(self, x):
"""
x: (p, d)
"""
x_ = (x[..., None] * self.P[None]).sum(-2) # (p, F)
return torch.cat([torch.sin(x_), torch.cos(x_)], -1) # (p, 2*F)
@torch.jit.script
def gaussian_activation(x, a):
return torch.exp(-x**2/(2*a**2))
@torch.jit.script
def scaledsin_activation(x, a):
return torch.sin(x*a)
@torch.jit.script
def rbf_nlin_s_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, 1)
Outputs:
(..., k)
"""
offset = x[..., None, :] - kc
out = (1 - offset.abs() * ks).clamp(0, 1).prod(-1)
return out, offset
@torch.jit.script
def rbf_nlin_d_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, d)
Outputs:
(..., k)
"""
offset = x[..., None, :] - kc # [..., k, d]
out = (1 - offset.abs() * ks).clamp(0, 1).prod(-1)
return out, offset
@torch.jit.script
def rbf_nlin_f_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, d, d)
Outputs:
(..., k)
"""
offset = x[..., None, :] - kc # [..., k, d]
out = (1 - (offset[..., None, :] * ks).sum(-1).abs()).clamp(0, 1).prod(-1)
return out, offset
@torch.jit.script
def rbf_ivq_s_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, 1)
Outputs:
(..., k)
"""
offset = x[..., None, :] - kc
out = (1 / (1 + offset.pow(2).sum(-1) * ks[..., 0]))
return out, offset
@torch.jit.script
def rbf_ivq_d_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, d)
Outputs:
(..., k)
"""
offset = x[..., None, :] - kc # (..., k, d)
out = (1 / (1 + (offset.pow(2) * ks).sum(-1)))
return out, offset
@torch.jit.script
def rbf_ivq_a_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, d, d)
Outputs:
(..., k)
"""
offset = x[..., None, :] - kc # (..., k, d)
out = 1 / (1 + ((offset[..., None] * ks).sum(-2) * offset).sum(-1))
return out, offset
def rbf_ivmq_a_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, d, d)
Outputs:
(..., k)
"""
offset = x[..., None, :] - kc # (..., k, d)
out = 1 / torch.sqrt(1 + ((offset[..., None] * ks).sum(-2) * offset).sum(-1))
return out, offset
def rbf_ivd_a_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, d, d)
Outputs:
(..., k)
"""
offset = x[..., None, :] - kc # (..., k, d)
out = 1 / (torch.sqrt(((offset[..., None] * ks).sum(-2) * offset).sum(-1)) + 1e-10)
return out, offset
def rbf_ivc_a_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, d, d)
Outputs:
(..., k)
"""
offset = x[..., None, :] - kc # (..., k, d)
out = 1 / (((offset[..., None] * ks).sum(-2) * offset).sum(-1).sqrt()**3 + 1e-30)
return out, offset
def rbf_gauss_a_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, d, d)
Outputs:
(..., k)
"""
d = x.shape[-1]
offset = x[..., None, :] - kc # (..., k, d)
out = torch.exp(-0.5*((offset[..., None] * ks).sum(-2) * offset).sum(-1))
return out, offset
def rbf_sgauss2_a_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, d, d)
Outputs:
(..., k)
"""
d = x.shape[-1]
offset = x[..., None, :] - kc # (..., k, d)
out = torch.exp(-(0.5*((offset[..., None] * ks).sum(-2) * offset).sum(-1))**2)
return out, offset
def rbf_nsgauss2_a_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, d, d)
Outputs:
(..., k)
"""
d = x.shape[-1]
offset = x[..., None, :] - kc # (..., k, d)
out = torch.exp(-0.5*((offset[..., None] * ks).sum(-2) * offset).sum(-1))**2
return out, offset
def rbf_markov_a_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, d, d)
Outputs:
(..., k)
"""
d = x.shape[-1]
offset = x[..., None, :] - kc # (..., k, d)
out = torch.exp(-((offset[..., None] * ks).sum(-2) * offset).sum(-1).sqrt())
return out, offset
def rbf_expsin_a_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, d, d)
Outputs:
(..., k)
"""
offset = x[..., None, :] - kc # (..., k, d)
out = torch.exp(-torch.sin(((offset[..., None] * ks).sum(-2) * offset).sum(-1).sqrt()))
return out, offset
def rbf_qd_a_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, d, d)
Outputs:
(..., k)
"""
offset = x[..., None, :] - kc # (..., k, d)
out = 1 + ((offset[..., None] * ks).sum(-2) * offset).sum(-1)
return out, offset
def rbf_mqd_a_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, d, d)
Outputs:
(..., k)
"""
offset = x[..., None, :] - kc # (..., k, d)
out = torch.sqrt(1 + ((offset[..., None] * ks).sum(-2) * offset).sum(-1))
return out, offset
def rbf_phs1_a_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, d, d)
Outputs:
(..., k)
"""
offset = x[..., None, :] - kc # (..., k, d)
out = ((offset[..., None] * ks).sum(-2) * offset).sum(-1).sqrt()
return out, offset
def rbf_phs1_s_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, 1)
Outputs:
(..., k)
"""
offset = x[..., None, :] - kc # (..., k, d)
out = torch.sqrt((offset**2).sum(-1))
return out, offset
def rbf_phs3_a_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, d, d)
Outputs:
(..., k)
"""
offset = x[..., None, :] - kc # (..., k, d)
out = ((offset[..., None] * ks).sum(-2) * offset).sum(-1).sqrt()**3
return out, offset
def rbf_vep_a_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, d, d)
Outputs:
(..., k)
"""
offset = x[..., None, :] - kc # (..., k, d)
out = 1 - ((offset[..., None] * ks).sum(-2) * offset).sum(-1)
return out, offset
def rbf_cos_s_fb(x, kc, ks):
"""
Inputs:
x: (..., d)
kc: (..., k, d)
ks: (..., k, d, d)
Outputs:
(..., k)
"""
offset = x[..., None, :] - kc # (..., k, d)
out = torch.nn.functional.cosine_similarity(x[..., None, :], kc, dim=-1)
return out, offset
def fix_params(model, fix_params):
for name, p in model.named_parameters():
if name.split('.')[0] in fix_params:
p.requires_grad = False
def get_param_groups(model):
param_groups = {}
for name, p in model.named_parameters():
if p.requires_grad:
if name.startswith('backbone'):
k = 'dec'
elif name.startswith('encoder'):
k = 'hg'
elif name.startswith('hg0'):
k = 'hg0'
elif name.startswith('lc0'):
k = 'lc0'
elif name.startswith('lcb0'):
k = 'lcb0'
elif name.startswith('kc0'):
k = 'kc0'
elif name.startswith('ks0'):
k = 'ks0'
else:
raise NotImplementedError
if k not in param_groups:
param_groups[k] = []
param_groups[k].append(p)
print(k, name, p.shape)
return param_groups
def parse_optim_type(optim_type):
if optim_type == 'SparseAdam':
return torch.optim.SparseAdam
elif optim_type == 'Adam':
return torch.optim.Adam
elif optim_type == 'RAdam':
return torch.optim.RAdam
elif optim_type == 'SGD':
return torch.optim.SGD
else:
raise NotImplementedError
def configure_optimizers(param_groups, hparams):
optims = {}
for k in param_groups.keys():
hparams_k = hparams[k]
optim_type = hparams_k['type']
optim_fn = parse_optim_type(optim_type)
if optim_type == 'SGD':
optims[k] = optim_fn(param_groups[k], lr=hparams_k['lr'], weight_decay=hparams_k['wd'])
elif optim_type == 'SparseAdam':
optims[k] = optim_fn(param_groups[k], lr=hparams_k['lr'], betas=hparams_k['betas'], eps=hparams_k['eps'])
else:
optims[k] = optim_fn(param_groups[k], lr=hparams_k['lr'], betas=hparams_k['betas'], eps=hparams_k['eps'], weight_decay=hparams_k['wd'])
return optims
def parse_lr_sch_type(lr_sch_type):
if lr_sch_type == 'ngp':
return lambda optimizer: torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda step: 0.33**max(0, step//10000-1))
elif lr_sch_type == 'cosine':
return torch.optim.lr_scheduler.CosineAnnealingLR
else:
raise NotImplementedError
def configure_lr_schedulers(optims, hparams):
lr_schs = {}
for k in optims.keys():
hparams_k = hparams[k]
lr_sch_type = hparams_k['type']
lr_sch_fn = parse_lr_sch_type(lr_sch_type)
if lr_sch_type == 'ngp':
lr_schs[k] = lr_sch_fn(optims[k])
else:
lr_schs[k] = lr_sch_fn(optims[k], T_max=hparams_k['T_max'], eta_min=optims[k].param_groups[0]['lr']/hparams_k['gamma'])
return lr_schs
def init_kc_i(n_kernel, rbf_type, dataset, kc_init_config, device):
with torch.no_grad():
init_type = kc_init_config['type']
kc_init_fn = None if init_type == 'none' else \
partial(eval('util_init.kc_init_' + init_type), **kc_init_config)
kc = None
out_other = {}
if kc_init_fn is not None:
points = dataset.points.cpu().reshape(-1, dataset.points.shape[-1])
if kc_init_config['weight_src'] == 'gt_grad':
points_weight = dataset.gt_grad.cpu()
elif kc_init_config['weight_src'] == 'gt':
points_weight = dataset.gt.cpu().reshape(-1, dataset.gt.shape[-1])
points_weight = (points_weight.abs() <= kc_init_config['weight_src_thres']).to(torch.float)
points_weight[kc_init_config['weight_src_npts']:] = 0
elif kc_init_config['weight_src'] == 'gt_inv':
points_weight = dataset.gt.cpu().reshape(-1, dataset.gt.shape[-1])
points_weight = 1 / (points_weight.abs() + kc_init_config['weight_src_thres'])
points_weight[kc_init_config['weight_src_npts']:] = 0
else:
raise NotImplementedError
kc, out_other = kc_init_fn(n_kernel, points=points,
points_weight=points_weight, cmin=dataset.cmin, cmax=dataset.cmax,
s_dims=dataset.s_dims, device=device, rbf_type=rbf_type)
return kc, out_other
def init_ks_i(rbf_type, dataset, kw_init_config, kc, out_other, device):
with torch.no_grad():
init_type = kw_init_config['type']
kw_init_fn = None if init_type == 'none' else \
partial(eval('util_init.kw_init_' + init_type), **kw_init_config)
ks = None
if kw_init_fn is not None:
points = dataset.points.cpu().reshape(-1, dataset.points.shape[-1])
if kw_init_config['weight_src'] == 'gt_grad':
points_weight = dataset.gt_grad.cpu()
elif kw_init_config['weight_src'] == 'gt':
points_weight = dataset.gt.cpu().reshape(-1, dataset.gt.shape[-1])
points_weight = (points_weight.abs() <= kw_init_config['weight_src_thres']).to(torch.float)
points_weight[kw_init_config['weight_src_npts']:] = 0
elif kw_init_config['weight_src'] == 'gt_inv':
points_weight = dataset.gt.cpu().reshape(-1, dataset.gt.shape[-1])
points_weight = 1 / (points_weight.abs() + kw_init_config['weight_src_thres'])
points_weight[kw_init_config['weight_src_npts']:] = 0
else:
raise NotImplementedError
kw_sq = kw_init_fn(kc, in_other=out_other, points=points,
points_weight=points_weight, cmin=dataset.cmin, cmax=dataset.cmax,
s_dims=dataset.s_dims, device=device, rbf_type=rbf_type)
kw_sq = util_misc.normalize_kw_sq(kw_sq, rbf_type)
util_misc.clip_kw_sq(kw_sq, rbf_type, dataset.cmin.flip(-1), dataset.cmax.flip(-1),
dataset.s_dims.flip(-1), is_ks=False, is_flat=False, vmin_min=None)
ks = util_misc.kw_sq_to_ks(kw_sq, rbf_type)
return ks
def init_rbf_params(model, dataset, kc_init_config, kw_init_config, device):
with torch.no_grad():
for k in model.rbf_suffixes:
n_kernel = getattr(model, f'kc{k}').weight.shape[0]
print(f'Initializing kc{k}...')
t = time.time()
kc, out_other = init_kc_i(n_kernel, model.rbf_type, dataset, kc_init_config[k], device)
if kc is not None:
getattr(model, f'kc{k}').weight.data = kc
print(f'Init kc{k}: {time.time() - t}')
else:
kc = getattr(model, f'kc{k}').weight.data
print(f'Initializing ks{k}...')
t = time.time()
ks = init_ks_i(model.rbf_type, dataset, kw_init_config[k], kc, out_other, device)
if ks is not None:
getattr(model, f'ks{k}').weight.data = ks.reshape(n_kernel, -1)
print(f'Init ks{k}: {time.time() - t}')
def init_nerf_kc_i(n_kernel, rbf_type, points, density, features, cmin, cmax, s_dims, kc_init_config, device):
with torch.no_grad():
init_type = kc_init_config['type']
kc_init_fn = None if init_type == 'none' else \
partial(eval('util_init.kc_init_' + init_type), **kc_init_config)
kc = None
out_other = {}
if kc_init_fn is not None:
points = points.cpu().reshape(-1, points.shape[-1])
if features is None:
points_weight = density
else:
alphas = 1 - torch.exp(-density)
features = (features - features.min()) / (features.max() - features.min())
features = features.reshape(*s_dims.tolist(), -1)
features_grad = kornia.filters.SpatialGradient3d(mode='diff', order=1)(features.movedim(-1, 0)[None])[0] # [c 3 d h w]
features_grad = features_grad.movedim((0, 1), (-2, -1)).pow(2).sum(dim=[-2, -1]).sqrt()[..., None] # [d h w 1]
points_weight = alphas * features_grad.reshape(-1, 1)
kc, out_other = kc_init_fn(n_kernel, points=points, points_weight=points_weight,
cmin=cmin, cmax=cmax, s_dims=s_dims, device=device, rbf_type=rbf_type)
return kc, out_other
def init_nerf_ks_i(rbf_type, points, density, features, cmin, cmax, s_dims, kw_init_config, kc, out_other, device):
with torch.no_grad():
init_type = kw_init_config['type']
kw_init_fn = None if init_type == 'none' else \
partial(eval('util_init.kw_init_' + init_type), **kw_init_config)
ks = None
if kw_init_fn is not None:
points = points.cpu().reshape(-1, points.shape[-1])
if features is None:
points_weight = density
else:
alphas = 1 - torch.exp(-density)
features = (features - features.min()) / (features.max() - features.min())
features = features.reshape(*s_dims.tolist(), -1)
features_grad = kornia.filters.SpatialGradient3d(mode='diff', order=1)(features.movedim(-1, 0)[None])[0] # [c 3 d h w]
features_grad = features_grad.movedim((0, 1), (-2, -1)).pow(2).sum(dim=[-2, -1]).sqrt()[..., None] # [d h w 1]
points_weight = alphas * features_grad.reshape(-1, 1)
kw_sq = kw_init_fn(kc, in_other=out_other, points=points, points_weight=points_weight,
cmin=cmin, cmax=cmax, s_dims=s_dims, device=device, rbf_type=rbf_type)
kw_sq = util_misc.normalize_kw_sq(kw_sq, rbf_type)
util_misc.clip_kw_sq(kw_sq, rbf_type, cmin.flip(-1), cmax.flip(-1), s_dims.flip(-1),
is_ks=False, is_flat=False, vmin_factor=100, vmax_factor=10)
ks = util_misc.kw_sq_to_ks(kw_sq, rbf_type)
return ks
def init_nerf_rbf_params(model, points, density, features, kc_init_config, kw_init_config, device):
with torch.no_grad():
for k in model.rbf_suffixes:
n_kernel = getattr(model, f'kc{k}').weight.shape[0]
print(f'Initializing kc{k}...')
t = time.time()
kc, out_other = init_nerf_kc_i(n_kernel, model.rbf_type, points, density, features, model.cmin,
model.cmax, model.s_dims, kc_init_config[k], device)
if kc is not None:
getattr(model, f'kc{k}').weight.data = kc
print(f'Init kc{k}: {time.time() - t}')
else:
kc = getattr(model, f'kc{k}').weight.data
print(f'Initializing ks{k}...')
t = time.time()
ks = init_nerf_ks_i(model.rbf_type, points, density, features, model.cmin,
model.cmax, model.s_dims, kw_init_config[k], kc, out_other, device)
if ks is not None:
getattr(model, f'ks{k}').weight.data = ks.reshape(n_kernel, -1)
print(f'Init ks{k}: {time.time() - t}')
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。