1 Star 0 Fork 0

Dream_seeker/tracking_car

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
run0.py 6.76 KB
一键复制 编辑 原始数据 按行查看 历史
jxk6575 提交于 2024-12-04 19:11 . final commit
import cv2
import os
import sys
package_path = "/system/lib"
if package_path not in sys.path:
sys.path.insert(0,package_path)
# import sophon.sail as sail
import numpy as np
import serial
def preprocess(frames):
batch_images = np.zeros((8, 3, 32, 32), dtype=np.float32)
for i, frame in enumerate(frames):
# Resize
img = cv2.resize(src=frame, dsize=(32, 32), interpolation=cv2.INTER_LINEAR)
# Convert BGR to RGB
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# Normalize
img = img.astype(np.float32)
img -= 127.5
img *= 1 / 127.5
# Change from (H,W,C) to (C,H,W)
img = img.transpose(2, 0, 1)
batch_images[i] = img
return batch_images
def postprocess(outputs):
outputs = list(outputs.values())[0]
pred_idx = outputs.argmax()
return pred_idx
def calculate_bias(original_image):
# Apply adaptive thresholding for better road detection
adaptive_thresh = cv2.adaptiveThreshold(
original_image,
255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV,
11,
2
)
# Apply morphological operations to clean up the image
kernel = np.ones((5, 5), np.uint8)
cleaned_image = cv2.morphologyEx(adaptive_thresh, cv2.MORPH_CLOSE, kernel)
cleaned_image = cv2.morphologyEx(cleaned_image, cv2.MORPH_OPEN, kernel)
height = cleaned_image.shape[0]
width = cleaned_image.shape[1]
# Calculate image midpoint
mid_x = width // 2
# Get all black pixel coordinates
black_pixels = np.where(cleaned_image > 0)
y_coords = black_pixels[0]
x_coords = black_pixels[1]
if len(x_coords) > 0:
# Create points array for cv2.convexHull
points = np.column_stack((x_coords, y_coords))
hull = cv2.convexHull(points)
# Extract x and y coordinates from hull points
hull_points = hull.reshape(-1, 2)
hull_x = hull_points[:, 0]
hull_y = hull_points[:, 1]
# Separate hull points into left and right based on median x-coordinate
median_x = np.median(hull_x)
left_mask = hull_x < median_x
right_mask = hull_x >= median_x
# Get left and right points
left_x = hull_x[left_mask]
left_y = hull_y[left_mask]
right_x = hull_x[right_mask]
right_y = hull_y[right_mask]
# Fit lines
left_fit = np.polyfit(left_y, left_x, 1)
right_fit = np.polyfit(right_y, right_x, 1)
# Calculate midline at the middle height of the image
mid_height = height // 2
left_x_at_mid = np.polyval(left_fit, mid_height)
right_x_at_mid = np.polyval(right_fit, mid_height)
midline_at_center = (left_x_at_mid + right_x_at_mid) / 2
# Calculate normalized bias (-100 to 100)
bias = 100 * (1 - 2 * (midline_at_center - mid_x) / width)
bias = np.clip(bias, -100, 100)
return bias
else:
return None
def infer(frame, model, graph_name, input_name):
# Create a buffer to store 8 frames
frames_buffer = []
frames_buffer.append(frame) # Add the current frame
# Get 7 more frames from the camera
cap = cv2.VideoCapture(0)
for _ in range(7): # We already have 1 frame, so get 7 more
ret, new_frame = cap.read()
if ret:
frames_buffer.append(new_frame)
cap.release()
if len(frames_buffer) == 8:
input_array = preprocess(frames_buffer)
input_data = {input_name: input_array}
outputs = model.process(graph_name, input_data)
pred_idx = postprocess(outputs)
# Calculate bias using grayscale version of the original frame
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
bias = calculate_bias(gray_frame)
return pred_idx, bias
else:
return None, None
def infer_from_camera(model_path):
# Load model
model = sail.Engine(model_path, 0, sail.IOMode.SYSIO)
graph_name = model.get_graph_names()[0]
input_name = model.get_input_names(graph_name)[0]
# Open the camera
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Error: Could not open camera.")
return
# Initialize frame buffer
frames_buffer = []
try:
while True:
# Capture frame-by-frame
ret, frame = cap.read()
if not ret:
print("Error: Could not read frame.")
break
# Add frame to buffer
frames_buffer.append(frame)
# Keep only the last 8 frames
if len(frames_buffer) >= 8:
# Process the 8 frames
input_array = preprocess(frames_buffer)
input_data = {input_name: input_array}
outputs = model.process(graph_name, input_data)
pred_idx = postprocess(outputs)
# Calculate bias using grayscale version of the latest frame
gray_frame = cv2.cvtColor(frames_buffer[-1], cv2.COLOR_BGR2GRAY)
bias = calculate_bias(gray_frame)
if pred_idx is not None and bias is not None:
# Configure serial port
port = '/dev/serial/by-id/usb-1a86_USB_Serial-if00-port0'
baudrate = 115200
ser = serial.Serial(port, baudrate, timeout=1)
if pred_idx == 2:
TS_class = 0
elif pred_idx == 0:
TS_class = 1
elif pred_idx == 1 and bias < 0:
TS_class = 2
elif pred_idx == 1 and bias >= 0:
TS_class = 3
else:
TS_class = 1
TS_pos = int(abs(bias))
TS_buffer = 'C' + chr(TS_class) + 'P' + chr(TS_pos)
for i in range(1):
if ser.is_open:
data_to_send = TS_buffer.encode('utf-8')
if TS_pos <= 127 and TS_class <= 127:
ser.write(data_to_send)
else:
print(f"无法打开串口 {port}")
# Reset buffer to keep only the latest frame
frames_buffer = frames_buffer[-1:]
# Display the frame
cv2.imshow('Camera', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
finally:
cap.release()
cv2.destroyAllWindows()
if 'ser' in locals() and ser.is_open:
ser.close()
if __name__ == '__main__':
model_path = 'compilation.bmodel'
infer_from_camera(model_path)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/jxk6575/tracking_car.git
git@gitee.com:jxk6575/tracking_car.git
jxk6575
tracking_car
tracking_car
master

搜索帮助