1 Star 1 Fork 0

Juruobudong/keras-face-recognition

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
face_recognize.py 6.42 KB
一键复制 编辑 原始数据 按行查看 历史
Bubbliiiing 提交于 2021-01-30 15:46 . Add files via upload
import os
import cv2
import numpy as np
import utils.utils as utils
from net.inception import InceptionResNetV1
from net.mtcnn import mtcnn
class face_rec():
def __init__(self):
#-------------------------#
# 创建mtcnn的模型
# 用于检测人脸
#-------------------------#
self.mtcnn_model = mtcnn()
self.threshold = [0.5,0.6,0.8]
#-----------------------------------#
# 载入facenet
# 将检测到的人脸转化为128维的向量
#-----------------------------------#
self.facenet_model = InceptionResNetV1()
model_path = './model_data/facenet_keras.h5'
self.facenet_model.load_weights(model_path)
#-----------------------------------------------#
# 对数据库中的人脸进行编码
# known_face_encodings中存储的是编码后的人脸
# known_face_names为人脸的名字
#-----------------------------------------------#
face_list = os.listdir("face_dataset")
self.known_face_encodings=[]
self.known_face_names=[]
for face in face_list:
name = face.split(".")[0]
img = cv2.imread("./face_dataset/"+face)
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
#---------------------#
# 检测人脸
#---------------------#
rectangles = self.mtcnn_model.detectFace(img, self.threshold)
#---------------------#
# 转化成正方形
#---------------------#
rectangles = utils.rect2square(np.array(rectangles))
#-----------------------------------------------#
# facenet要传入一个160x160的图片
# 利用landmark对人脸进行矫正
#-----------------------------------------------#
rectangle = rectangles[0]
landmark = np.reshape(rectangle[5:15], (5,2)) - np.array([int(rectangle[0]), int(rectangle[1])])
crop_img = img[int(rectangle[1]):int(rectangle[3]), int(rectangle[0]):int(rectangle[2])]
crop_img, _ = utils.Alignment_1(crop_img,landmark)
crop_img = np.expand_dims(cv2.resize(crop_img, (160, 160)), 0)
#--------------------------------------------------------------------#
# 将检测到的人脸传入到facenet的模型中,实现128维特征向量的提取
#--------------------------------------------------------------------#
face_encoding = utils.calc_128_vec(self.facenet_model, crop_img)
self.known_face_encodings.append(face_encoding)
self.known_face_names.append(name)
def recognize(self,draw):
#-----------------------------------------------#
# 人脸识别
# 先定位,再进行数据库匹配
#-----------------------------------------------#
height,width,_ = np.shape(draw)
draw_rgb = cv2.cvtColor(draw,cv2.COLOR_BGR2RGB)
#--------------------------------#
# 检测人脸
#--------------------------------#
rectangles = self.mtcnn_model.detectFace(draw_rgb, self.threshold)
if len(rectangles)==0:
return
# 转化成正方形
rectangles = utils.rect2square(np.array(rectangles,dtype=np.int32))
rectangles[:, [0,2]] = np.clip(rectangles[:, [0,2]], 0, width)
rectangles[:, [1,3]] = np.clip(rectangles[:, [1,3]], 0, height)
#-----------------------------------------------#
# 对检测到的人脸进行编码
#-----------------------------------------------#
face_encodings = []
for rectangle in rectangles:
#---------------#
# 截取图像
#---------------#
landmark = np.reshape(rectangle[5:15], (5,2)) - np.array([int(rectangle[0]), int(rectangle[1])])
crop_img = draw_rgb[int(rectangle[1]):int(rectangle[3]), int(rectangle[0]):int(rectangle[2])]
#-----------------------------------------------#
# 利用人脸关键点进行人脸对齐
#-----------------------------------------------#
crop_img,_ = utils.Alignment_1(crop_img,landmark)
crop_img = np.expand_dims(cv2.resize(crop_img, (160, 160)), 0)
face_encoding = utils.calc_128_vec(self.facenet_model, crop_img)
face_encodings.append(face_encoding)
face_names = []
for face_encoding in face_encodings:
#-------------------------------------------------------#
# 取出一张脸并与数据库中所有的人脸进行对比,计算得分
#-------------------------------------------------------#
matches = utils.compare_faces(self.known_face_encodings, face_encoding, tolerance = 0.9)
name = "Unknown"
#-------------------------------------------------------#
# 找出距离最近的人脸
#-------------------------------------------------------#
face_distances = utils.face_distance(self.known_face_encodings, face_encoding)
#-------------------------------------------------------#
# 取出这个最近人脸的评分
#-------------------------------------------------------#
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = self.known_face_names[best_match_index]
face_names.append(name)
rectangles = rectangles[:,0:4]
#-----------------------------------------------#
# 画框~!~
#-----------------------------------------------#
for (left, top, right, bottom), name in zip(rectangles, face_names):
cv2.rectangle(draw, (left, top), (right, bottom), (0, 0, 255), 2)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(draw, name, (left , bottom - 15), font, 0.75, (255, 255, 255), 2)
return draw
if __name__ == "__main__":
dududu = face_rec()
video_capture = cv2.VideoCapture(0)
while True:
ret, draw = video_capture.read()
dududu.recognize(draw)
cv2.imshow('Video', draw)
if cv2.waitKey(20) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/juruobudong/keras-face-recognition.git
git@gitee.com:juruobudong/keras-face-recognition.git
juruobudong
keras-face-recognition
keras-face-recognition
master

搜索帮助